I am a
Home I AM A Search Login

Papers: 12 Oct 2019 - 18 Oct 2019

Share this

Dual and Opposing Functions of the Central Amygdala in the Modulation of Pain.

Pain perception is essential for survival and can be amplified or suppressed by expectations, experiences, and context. The neural mechanisms underlying bidirectional modulation of pain remain largely unknown. Here, we demonstrate that the central nucleus of the amygdala (CeA) functions as a pain rheostat, decreasing or increasing pain-related behaviors in mice. This dual and opposing function of the CeA is encoded by opposing changes in the excitability of two distinct subpopulations of GABAergic neurons that receive excitatory inputs from the parabrachial nucleus (PB). Thus, cells expressing protein kinase C-delta (CeA-PKCδ) are sensitized by nerve injury and increase pain-related responses. In contrast, cells expressing somatostatin (CeA-Som) are inhibited by nerve injury and their activity drives antinociception. Together, these results demonstrate that the CeA can amplify or suppress pain in a cell-type-specific manner, uncovering a previously unknown mechanism underlying bidirectional control of pain in the brain.

Learn More >

A tetrapeptide class of biased analgesics from an Australian fungus targets the µ-opioid receptor.

An Australian estuarine isolate of sp. MST-MF667 yielded 3 tetrapeptides named the bilaids with an unusual alternating LDLD chirality. Given their resemblance to known short peptide opioid agonists, we elucidated that they were weak ( low micromolar) μ-opioid agonists, which led to the design of bilorphin, a potent and selective μ-opioid receptor (MOPr) agonist ( 1.1 nM). In sharp contrast to all-natural product opioid peptides that efficaciously recruit β-arrestin, bilorphin is G protein biased, weakly phosphorylating the MOPr and marginally recruiting β-arrestin, with no receptor internalization. Importantly, bilorphin exhibits a similar G protein bias to oliceridine, a small nonpeptide with improved overdose safety. Molecular dynamics simulations of bilorphin and the strongly arrestin-biased endomorphin-2 with the MOPr indicate distinct receptor interactions and receptor conformations that could underlie their large differences in bias. Whereas bilorphin is systemically inactive, a glycosylated analog, bilactorphin, is orally active with similar in vivo potency to morphine. Bilorphin is both a unique molecular tool that enhances understanding of MOPr biased signaling and a promising lead in the development of next generation analgesics.

Learn More >

Epigenomic signatures underpin the axonal regenerative ability of dorsal root ganglia sensory neurons.

Axonal injury results in regenerative success or failure, depending on whether the axon lies in the peripheral or the CNS, respectively. The present study addresses whether epigenetic signatures in dorsal root ganglia discriminate between regenerative and non-regenerative axonal injury. Chromatin immunoprecipitation for the histone 3 (H3) post-translational modifications H3K9ac, H3K27ac and H3K27me3; an assay for transposase-accessible chromatin; and RNA sequencing were performed in dorsal root ganglia after sciatic nerve or dorsal column axotomy. Distinct histone acetylation and chromatin accessibility signatures correlated with gene expression after peripheral, but not central, axonal injury. DNA-footprinting analyses revealed new transcriptional regulators associated with regenerative ability. Machine-learning algorithms inferred the direction of most of the gene expression changes. Neuronal conditional deletion of the chromatin remodeler CCCTC-binding factor impaired nerve regeneration, implicating chromatin organization in the regenerative competence. Altogether, the present study offers the first epigenomic map providing insight into the transcriptional response to injury and the differential regenerative ability of sensory neurons.

Learn More >

Cannabinoid effects on responses to quantitative sensory testing among individuals with and without clinical pain: a systematic review.

There has been an explosion of interest in the utility of cannabinoids as potential analgesics. This systematic review critically synthesizes the evidence for cannabinoid analgesic effects on quantitative sensory testing outcomes in both healthy adults and patients with chronic non-cancer pain (CNCP). Our systematic review protocol is pre-registered on PROSPERO (CRD42018117367). An electronic search was made in PsycINFO, Cochrane, Google Scholar, Embase, and Pubmed of all literature published until August 2018. Of the 1,217 studies found from the search, a total 39 placebo-controlled studies that met the eligibility criteria were synthesized for the present study. Due to substantial heterogeneity of study designs, populations, cannabinoid compounds, and quantitative sensory testing outcomes, meta-analysis was not conducted. More consistent evidence of cannabinoid analgesia was observed for inhaled cannabis than synthetic cannabinoids. Analgesic effects were most commonly observed in tests of cold pain sensitivity, and hyperalgesic effects were most commonly observed in tests of electrical stimulation. Patterns of findings from studies with healthy subjects did not substantively differ from those with CNCP. However, these observations are qualified by the high degree of inconsistency across studies and methodological heterogeneity. We offer recommendations for future studies to improve study rigor and reproducibility.

Learn More >

Intraoperative methadone administration and postoperative pain control: a systematic review and meta-analysis.

Postoperative pain is not adequately managed in greater than 40% of surgical patients and is a high priority for perioperative research. In this meta-analysis, we examined studies comparing postoperative opioid consumption and pain scores in surgical patients who received methadone by any route versus those who received another opioid by any route. Studies were identified from PubMed, Cochrane, Web of Science, EMBASE, and Scopus from January 1966-November 2018. Pooled odds ratios were calculated for a primary outcome of postoperative opioid consumption and secondary outcomes of time-to-extubation, time-to-first postoperative analgesia request, satisfaction, hospital length-of-stay, and complications. Postoperative pain scores were assessed qualitatively. Ten studies (617 patients) were included. Postoperative opioid consumption at 24 hours was lower in the methadone group versus control (MD = -15.22 mg oral morphine equivalents, 95% CI -27.05 to -3.38; P=.01). Patients in the methadone group generally reported lower postoperative pain scores in seven of ten studies. Meta-analysis revealed greater satisfaction scores with analgesia in the methadone group versus control (0-100 visual analog scale; MD = 7.16, 95% CI 2.30 to 12.01; P=.004). There was no difference in time-to-extubation, time-to-first analgesia request, hospital length of stay, or complications (nausea, sedation, respiratory depression, hypoxemia). The results demonstrate that surgical patients who received intraoperative methadone had lower postoperative opioid consumption, generally reported lower pain scores, and experienced better satisfaction with analgesia. However, these advantages need to be weighed carefully against dangerous risks with perioperative methadone, specifically respiratory depression and arrhythmia. Future studies should explore logistics, safety, and cost-effectiveness.

Learn More >

Functional connectivity of the amygdala is linked to individual differences in emotional pain facilitation.

The amygdala is central to emotional processing of sensory stimuli, including pain. Because recent findings suggest that individual differences in emotional processes play a part in the development of chronic pain, a better understanding of the individual patterns of functional connectivity that make individuals susceptible to emotionally modulated facilitation of pain is needed. We therefore investigated the neural correlates of individual differences in emotional pain facilitation using resting-state functional magnetic resonance imaging (rs-fMRI) with amygdala seed.Thirty-seven participants took part in 3 separate sessions, during which pain sensitivity was tested (session 1), participants underwent rs-fMRI (session 2), and emotional pain modulation was assessed (session 3). Amygdala served as seed for the rs-fMRI analysis and whole-brain voxelwise connectivity was tested. Pain modulatory scores were entered as regressor for the group analysis.Stronger connectivity of the amygdala to S1/M1, S2/operculum, and posterior parietal cortex at rest characterized individuals who showed greater pain facilitation by negative emotions. When comparing the amygdala networks associated with pain unpleasantness and with pain intensity modulation, most of the identified areas were equally related to either pain rating type; only amygdala connectivity to S1/M1 was found to predict pain intensity modulation specifically.We demonstrate that trait-like patterns of functional connectivity between amygdala and cortical regions involved in sensory and motor responses are associated with the individual amplitude of pain facilitation by negative emotional states. Our results are an early step towards improved understanding of the mechanisms that give rise to individual differences in emotional pain modulation.

Learn More >

Granulocyte-Colony Stimulating Factor-Induced Neutrophil Recruitment Provides Opioid-Mediated Endogenous Anti-nociception in Female Mice With Oral Squamous Cell Carcinoma.

Oral cancer patients report severe function-induced pain; severity is greater in females. We hypothesize that a neutrophil-mediated endogenous analgesic mechanism is responsible for sex differences in nociception secondary to oral squamous cell carcinoma (SCC). Neutrophils isolated from the cancer-induced inflammatory microenvironment contain β-endorphin protein and are identified by the Ly6G immune marker. We previously demonstrated that male mice with carcinogen-induced oral SCC exhibit less nociceptive behavior and a higher concentration of neutrophils in the cancer microenvironment compared to female mice with oral SCC. Oral cancer cells secrete granulocyte colony stimulating factor (G-CSF), a growth factor that recruits neutrophils from bone marrow to the cancer microenvironment. We found that recombinant G-CSF (rG-CSF, 5 μg/mouse, intraperitoneal) significantly increased circulating Ly6G neutrophils in the blood of male and female mice within 24 h of administration. In an oral cancer supernatant mouse model, rG-CSF treatment increased cancer-recruited Ly6G neutrophil infiltration and abolished orofacial nociceptive behavior evoked in response to oral cancer supernatant in both male and female mice. Local naloxone treatment restored the cancer mediator-induced nociceptive behavior. We infer that rG-CSF-induced Ly6G neutrophils drive an endogenous analgesic mechanism. We then evaluated the efficacy of chronic rG-CSF administration to attenuate oral cancer-induced nociception using a tongue xenograft cancer model with the HSC-3 human oral cancer cell line. Saline-treated male mice with HSC-3 tumors exhibited less oral cancer-induced nociceptive behavior and had more β-endorphin protein in the cancer microenvironment than saline-treated female mice with HSC-3 tumors. Chronic rG-CSF treatment (2.5 μg/mouse, every 72 h) increased the HSC-3 recruited Ly6G neutrophils, increased β-endorphin protein content in the tongue and attenuated nociceptive behavior in female mice with HSC-3 tumors. From these data, we conclude that neutrophil-mediated endogenous opioids warrant further investigation as a potential strategy for oral cancer pain treatment.

Learn More >

Moderators of internet-delivered cognitive-behavioral therapy for adolescents with chronic pain: Who benefits from treatment at long-term follow-up?

Cognitive-behavioral therapy (CBT) is effective for pediatric chronic pain, but little is understood about which youth are most likely to benefit. The current study aimed to identify individual characteristics for which CBT yielded the greatest (and least) clinical benefit among adolescents with chronic pain participating in a multi-center randomized controlled trial (RCT) of internet-delivered CBT (WebMAP2). A total of 273 adolescents ages 11-17 with chronic pain (Mage=14.7; 75.1% female) were randomly assigned to internet-delivered CBT or internet-delivered pain education and evaluated at pre-treatment, post-treatment, and two longer-term follow-up periods (6 and 12 months). Multi-level growth models tested several adolescent- and parent-level moderators of change in pain-related disability including (1) adolescent age, sex, pain characteristics, distress, and sleep quality and (2) parent education level, distress, and protective parenting behaviors. Young adolescents (ages 11-14 vs. older adolescents ages 15-17) and those whose parents experienced lower levels (vs. higher levels) of emotional distress responded better to internet CBT treatment, showing greater improvements in disability up to 12 months post-treatment. This study expands knowledge on who benefits most from internet-delivered psychological treatment for youth with chronic pain in the context of a large multicenter RCT, suggesting several avenues for maximizing treatment efficacy and durability in this population. Perspective: This study identified adolescent- and parent-level predictors of treatment response to Internet-based CBT for pediatric chronic pain up to 12 months later. Younger adolescents and those whose parents had lower levels of distress may particularly benefit from this intervention. Older adolescents and those whose parents exhibit higher distress may require alternative treatment approaches.

Learn More >

Activation of the intrinsic pain inhibitory circuit from the midcingulate Cg2 to zona incerta alleviates neuropathic pain.

Neuropathic pain is one of the most common and notorious neurological diseases. The changes in cerebral structures after nerve injury and the corresponding contributions to neuropathic pain are not well understood. Here we found that the majority of glutamatergic neurons in the area 2 of midcingulate cortex (MCC Cg2) were inhibited by painful stimulation in male mice. Optogenetic manipulation revealed that these neurons were tonically involved in the inhibitory modulation of multimodal nociception. We further identified the projections to GABAergic neurons in the zona incerta (ZI) mediated the pain inhibitory role. However, MCC Cg2 became hypoactive after nerve injury. Although a brief activation of the MCC Cg2 to ZI circuit was able to relieve the aversiveness associated with spontaneous ongoing pain, consecutive activation of the circuit was required to alleviate neuropathic allodynia. In contrast, glutamatergic neurons in the area 1 of midcingulate cortex played opposite roles in pain modulation. They became hyperactive after nerve injury and only consecutive inhibition of their activity relieved allodynia. These results demonstrate that MCC Cg2 constitute a component of intrinsic pain inhibitory circuitry and their hypoactivity underlies neuropathic pain. We propose that selective and persistent activation of the MCC Cg2 to ZI circuit may serve as a potential therapeutic strategy for this disease.Glutamatergic neurons in the area 2 of midcingulate cortex (MCC Cg2) are tonically involved in the intrinsic pain inhibition via projecting to GABAergic neurons in the zona incerta. They are hypoactive after nerve injury. Selective activation of the circuit compensates the reduction of its analgesic strength and relieves neuropathic pain. Therefore, MCC Cg2 and the related analgesic circuit may serve as a therapeutic target for neuropathic pain. In contrast, MCC Cg1 have an opposite role in pain modulation and become hyperactive after nerve injury. The present study provides novel evidence for the concept that neuropathic pain is associated with the dysfunction of endogenous pain modulatory system and new perspective on the treatment of neuropathic pain.

Learn More >

Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics.

Pharmacology and optogenetics are widely used in neuroscience research to study the central and peripheral nervous systems. While both approaches allow for sophisticated studies of neural circuitry, continued advances are, in part, hampered by technology limitations associated with requirements for physical tethers that connect external equipment to rigid probes inserted into delicate regions of the brain. The results can lead to tissue damage and alterations in behavioral tasks and natural movements, with additional difficulties in use for studies that involve social interactions and/or motions in complex 3-dimensional environments. These disadvantages are particularly pronounced in research that demands combined optogenetic and pharmacological functions in a single experiment. Here, we present a lightweight, wireless, battery-free injectable microsystem that combines soft microfluidic and microscale inorganic light-emitting diode probes for programmable pharmacology and optogenetics, designed to offer the features of drug refillability and adjustable flow rates, together with programmable control over the temporal profiles. The technology has potential for large-scale manufacturing and broad distribution to the neuroscience community, with capabilities in targeting specific neuronal populations in freely moving animals. In addition, the same platform can easily be adapted for a wide range of other types of passive or active electronic functions, including electrical stimulation.

Learn More >

The interaction between stress and chronic pain through the lens of threat learning.

Stress and pain are interleaved at multiple levels – interacting and influencing each other. Both are modulated by psychosocial factors including fears, beliefs, and goals, and are served by overlapping neural substrates. One major contributing factor in the development and maintenance of chronic pain is threat learning, with pain as an emotionally-salient threat – or stressor. Here, we argue that threat learning is a central mechanism and contributor, mediating the relationship between stress and chronic pain. We review the state of the art on (mal)adaptive learning in chronic pain, and on effects of stress and particularly cortisol on learning. We then provide a theoretical integration of how stress may affect chronic pain through its effect on threat learning. Prolonged stress, as may be experienced by patients with chronic pain, and its resulting changes in key brain networks modulating stress responses and threat learning, may further exacerbate these impairing effects on threat learning. We provide testable hypotheses and suggestions for how this integration may guide future research and clinical approaches in chronic pain.

Learn More >

Identification of an allosteric binding site on the human glycine transporter, GlyT2, for bioactive lipid analgesics.

The treatment of chronic pain is poorly managed by current analgesics, and there is a need for new classes of drugs. We recently developed a series of bioactive lipids that inhibit the human glycine transporter GlyT2 (SLC6A5) and provide analgesia in animal models of pain. Here, we have used functional analysis of mutant transporters combined with molecular dynamics simulations of lipid-transporter interactions to understand how these bioactive lipids interact with GlyT2. This study identifies a novel extracellular allosteric modulator site formed by a crevice between transmembrane domains 5, 7, and 8, and extracellular loop 4 of GlyT2. Knowledge of this site could be exploited further in the development of drugs to treat pain, and to identify other allosteric modulators of the SLC6 family of transporters.

Learn More >

Efficacy of antibiotic treatment in patients with chronic low back pain and Modic changes (the AIM study): double blind, randomised, placebo controlled, multicentre trial.

To assess the efficacy of three months of antibiotic treatment compared with placebo in patients with chronic low back pain, previous disc herniation, and vertebral endplate changes (Modic changes).

Learn More >

Individual differences in pain sensitivity are associated with cognitive network functional connectivity following one night of experimental sleep disruption.

Previous work suggests that sleep disruption can contribute to poor pain modulation. Here, we used experimental sleep disruption to examine the relationship between sleep disruption-induced pain sensitivity and functional connectivity (FC) of cognitive networks contributing to pain modulation. Nineteen healthy individuals underwent two counterbalanced experimental sleep conditions for one night each: uninterrupted sleep versus sleep disruption. Following each condition, participants completed functional MRI including a simple motor task and a noxious thermal stimulation task. Pain ratings and stimulus temperatures from the latter task were combined to calculate a pain sensitivity change score following sleep disruption. This change score was used as a predictor of simple motor task FC changes using bilateral executive control networks (RECN, LECN) and the default mode network (DMN) masks as seed regions of interest (ROIs). Increased pain sensitivity after sleep disruption was positively associated with increased RECN FC to ROIs within the DMN and LECN (F = 25.28, pFDR = 0.05). However, this pain sensitivity change score did not predict FC changes using LECN and DMN masks as seeds (pFDR > 0.05). Given that only RECN FC was associated with sleep loss-induced hyperalgesia, findings suggest that cognitive networks only partially contribute to the sleep-pain dyad.

Learn More >

Inflammation Induced Sensory Nerve Growth and Pain Hypersensitivity Requires the N-Type Calcium Channel Cav2.2.

Voltage-gated calcium channels (VGCCs) are important mediators of pain hypersensitivity during inflammatory states, but their role in sensory nerve growth remains underexplored. Here, we assess the role of the N-type calcium channel Cav2.2 in the complete Freund's adjuvant (CFA) model of inflammatory pain. We demonstrate with hybridization and immunoblotting, an increase in Cav2.2 expression after hind paw CFA injection in sensory neurons that respond to thermal stimuli, but not in two different mechanosensitive neuronal populations. Further, Cav2.2 upregulation post-CFA correlates with thermal but not mechanical hyperalgesia in behaving mice, and this hypersensitivity is blocked with a specific Cav2.2 inhibitor. Voltage clamp recordings reveal a significant increase in Cav2.2 currents post-CFA, while current clamp analyses demonstrate a significant increase in action potential frequency. Moreover, CFA-induced sensory nerve growth, which involves the extracellular signal-related kinase (ERK1/2) signaling pathway and likely contributes to inflammation-induced hyperalgesia, was blocked with the Cav2.2 inhibitor. Together, this work uncovers a role for Cav2.2 during inflammation, demonstrating that VGCC activity can promote thermal hyperalgesia through both changes in firing rates of sensory neurons as well as promotion of new neurite outgrowth.

Learn More >

Exposure Induced Changes in Neural Circuitry for Pain-Related Fear: A Longitudinal fMRI Study in Chronic Low Back Pain.

Exposure (EXP) is a cognitive-behavioral treatment aimed at reducing pain-related fear in chronic pain, and has proven successful in reducing pain-related disability in patients with chronic low back pain (cLBP). The current longitudinal study aimed to reveal the neural correlates of changes in pain-related fear as a result of EXP. Twenty-three patients with cLBP were included in this study. Patients with cLBP underwent MRI scanning pre-treatment (pre-EXP), post-treatment (post-EXP), and 6 months after end of treatment (FU-EXP). Pain-free controls were scanned at two time points. In the scanner, participants were presented with pictures involving back-related movements, evoking pain-related fear in patients. Pre-treatment, functional MRI revealed increased activation in right posterior insula and increased deactivation in medial prefrontal cortex (mPFC) in patients compared to controls. Post-treatment, patients reported reduced fear and pre-EXP group differences were no longer present. Contrasting pre- to post- and FU-EXP in patients revealed that stimulus-evoked neural responses changed in sensorimotor as well as cognitive/affective brain regions. Lastly, exploratory analyses revealed a tendency toward an association between changes in neural activation and changes in fear ratings, including the hippocampus and temporal lobe (pre- to post-EXP changes), and mPFC and posterior cingulate cortex (pre- to FU-EXP changes). Taken together, we show evidence that neural circuitry for pain-related fear is modulated by EXP, and that changes are associated with self-reported decreases in pain-related fear.

Learn More >

Nociceptor nerves set the stage for skin immunity.

Learn More >

A Randomized Phase 2 Study of Erenumab for the Prevention of Episodic Migraine in Japanese Adults.

A phase 2, double-blind, placebo-controlled study to evaluate the efficacy and safety of erenumab for the prevention of episodic migraine in Japanese patients was conducted.

Learn More >

Negative Affect-Related Factors Have the Strongest Association with Prescription Opioid Misuse in a Cross-Sectional Cohort of Patients with Chronic Pain.

Increased opioid prescription to relieve pain among patients with chronic pain is associated with increased risk for misuse, potentially leading to substance use disorders and overdose death. We aimed to characterize the relative importance and identify the most significant of several potential risk factors for the severity of self-reported prescribed opioid misuse behaviors.

Learn More >

Interpersonal Dyadic Influences of Pain Catastrophizing Between Caregivers and Children with Chronic Pain.

Pain catastrophizing is an important predictor of pain-related outcomes. Caregiver and child levels of catastrophizing about child chronic pain are associated cross-sectionally, yet predictive associations testing interpersonal influences within caregiver-child dyads are lacking. The present study tested caregiver and child influences on partner catastrophizing about child pain over 1 month following initiation of interdisciplinary pain treatment and examined whether change in pain catastrophizing was associated with child pain interference.

Learn More >

An emerging role for Toll-like receptors at the neuroimmune interface in osteoarthritis.

Osteoarthritis (OA) is a chronic progressive, painful disease of synovial joints, characterized by cartilage degradation, subchondral bone remodeling, osteophyte formation, and synovitis. It is now widely appreciated that the innate immune system, and in particular Toll-like receptors (TLRs), contributes to pathological changes in OA joint tissues. Furthermore, it is now also increasingly recognized that TLR signaling plays a key role in initiating and maintaining pain. Here, we reviewed the literature of the past 5 years with a focus on how TLRs may contribute to joint damage and pain in OA. We discuss biological effects of specific damage-associated molecular patterns (DAMPs) which act as TLR ligands in vitro, including direct effects on pain-sensing neurons. We then discuss the phenotype of transgenic mice that target TLR pathways, and provide evidence for a complex balance between pro- and anti-inflammatory signaling pathways activated by OA DAMPs. Finally, we summarize clinical evidence implicating TLRs in OA pathogenesis, including polymorphisms and surrogate markers of disease activity. Our review of the literature led us to propose a model where multi-directional crosstalk between connective tissue cells (chondrocytes, fibroblasts), innate immune cells, and sensory neurons in the affected joint may promote OA pathology and pain.

Learn More >

Fibrofog in daily life: An examination of ambulatory subjective and objective cognitive function in fibromyalgia.

Perceived cognitive dysfunction in fibromyalgia (FM), "fibrofog," is common. Prior laboratory-based studies have limited our understanding of cognitive function in FM in daily life. The aim of this study is to explore levels of subjective and objective cognitive functioning and the association between subjective and objective aspects of cognition in persons with and without FM in the lived environment.

Learn More >

TIMP-1 Attenuates the Development of Inflammatory Pain Through MMP-Dependent and Receptor-Mediated Cell Signaling Mechanisms.

Unresolved inflammation is a significant predictor for developing chronic pain, and targeting the mechanisms underlying inflammation offers opportunities for therapeutic intervention. During inflammation, matrix metalloproteinase (MMP) activity contributes to tissue remodeling and inflammatory signaling, and is regulated by tissue inhibitors of metalloproteinases (TIMPs). TIMP-1 and -2 have known roles in pain, but only in the context of MMP inhibition. However, TIMP-1 also has receptor-mediated cell signaling functions that are not well understood. Here, we examined how TIMP-1-dependent cell signaling impacts inflammatory hypersensitivity and ongoing pain. We found that hindpaw injection of complete Freund's adjuvant (CFA) increased cutaneous TIMP-1 expression that peaked prior to development of mechanical hypersensitivity, suggesting that TIMP-1 inhibits the development of inflammatory hypersensitivity. To examine this possibility, we injected TIMP-1 knockout (T1KO) mice with CFA and found that T1KO mice exhibited rapid onset thermal and mechanical hypersensitivity at the site of inflammation that was absent or attenuated in WT controls. We also found that T1KO mice exhibited hypersensitivity in adjacent tissues innervated by different sets of afferents, as well as skin contralateral to the site of inflammation. Replacement of recombinant murine (rm)TIMP-1 alleviated hypersensitivity when administered at the site and time of inflammation. Administration of either the MMP inhibiting N-terminal or the cell signaling C-terminal domains recapitulated the antinociceptive effect of full-length rmTIMP-1, suggesting that rmTIMP-1inhibits hypersensitivity through MMP inhibition and receptor-mediated cell signaling. We also found that hypersensitivity was not due to genotype-specific differences in MMP-9 activity or expression, nor to differences in cytokine expression. Administration of rmTIMP-1 prevented mechanical hypersensitivity and ongoing pain in WT mice, collectively suggesting a novel role for TIMP-1 in the attenuation of inflammatory pain.

Learn More >

Calcitonin gene-related peptide levels in tear fluid are elevated in migraine patients compared to healthy controls.

Calcitonin gene-related peptide (CGRP) released from trigeminal nerve fibres indicates trigeminal activation and has a key role in migraine pathophysiology. The trigeminal nerve directly innervates the eye. Therefore, in this study, we compared Calcitonin gene-related peptide in tear fluid of migraine patients and healthy controls.

Learn More >

A data science approach to the selection of most informative readouts of the human intradermal capsaicin pain model to assess pregabalin effects.

Persistent and in particular neuropathic pain is a major health care problem with still insufficient pharmacological treatment options. This triggered research activities aimed at finding analgesics with a novel mechanism of action. Results of these efforts will need to pass through the phases of drug development, in which experimental human pain models are established components often implemented as chemical hyperalgesia induced by capsaicin. We aimed at ranking the various readouts of the human capsaicin-based pain model with respect to the most relevant information about the effects of a potential reference analgesic. In a placebo-controlled, randomised cross-over study, seven different pain-related readouts were acquired in 16 healthy subjects before and after oral administration of 300 mg pregabalin. The sizes of the effect on pain induced by intradermal injection of capsaicin were quantified by calculating Cohen's d. While in four of the seven pain-related parameters, pregabalin provided a small effect judged by values of Cohen's d exceeding 0.2, an item-categorization technique implemented as computed ABC analysis identified the pain intensities in the area of secondary hyperalgesia and of allodynia as the most suitable parameters to quantify the analgesic effects of pregabalin. Results of this study provide further support for the ability of the intradermal capsaicin pain model to show analgesic effects of pregabalin. Results can serve as a basis for the designs of studies where the inclusion of this particular pain model and pregabalin is planned.

Learn More >

Acupuncture methods for acute migraine attack: a Bayesian network meta-analysis protocol.

Migraine is a primary cause of disability worldwide, particularly affecting young adults and middle-aged women. Although multiple clinical trials and systematic reviews have suggested that acupuncture could be effective in treating acute migraine attacks, the methodologies in academic studies and commonly applied practices vary greatly. This study protocol outlines a plan to assess and rank the effectiveness of the different acupuncture methods in order to develop a prioritised acupuncture-based treatment regimen for acute migraine attacks.

Learn More >

Current understanding of premonitory networks in migraine: A window to attack generation.

To describe neuronal networks underlying commonly reported migraine premonitory symptoms and to discuss how these might precipitate migraine pain.

Learn More >

Effects of ghrelin on pGSK-3β and β-catenin expression when protects against neuropathic pain behavior in rats challenged with chronic constriction injury.

Ghrelin has been shown to alleviate neuropathic pain by inhibiting the release of proinflammatory cytokines. The purpose of this study was to investigate the role of GSK-3β/β-catenin signaling in mediating the effect of ghrelin on neuropathic pain and to understand the associated mechanisms. Chronic constriction injury (CCI) of the sciatic nerve was used to establish a rat model of neuropathic pain. Hyperalgesia and allodynia were evaluated by observing the mechanical withdrawal threshold and the thermal withdrawal latency. Wnt3a and β-catenin protein expression and GSK-3β phosphorylation were detected by western blotting analysis. The levels of tumor necrosis factor-α and IL-1β were determined using an enzyme-linked immunosorbent assay. In addition, we used immunohistochemical analysis to determine the levels of GSK-3β phosphorylation in the dorsal horn of the spinal cord. Intrathecal delivery of ghrelin effectively ameliorated CCI-induced mechanical allodynia and thermal hyperalgesia at 7 and 14 days and reduced the levels of tumor necrosis factor-α. Ghrelin inhibited CCI-induced GSK-3β activation and β-catenin overexpression in the spinal dorsal horn. Moreover, intrathecal injection of ghrelin suppressed the activation of GSK-3β in the spinal dorsal horn of CCI rats, as assessed by immunohistochemical analysis. Our data indicated that ghrelin could markedly alleviate neuropathic pain by inhibiting the expression of β-catenin, via the suppression of GSK-3β activation, in the spinal cord of CCI rats.

Learn More >

Process evaluation protocol for the I-WOTCH study: an opioid tapering support programme for people with chronic non-malignant pain.

The Improving the Wellbeing of people with Opioid Treated CHronic Pain (I-WOTCH) randomised controlled trial uses a multicomponent self-management intervention to help people taper their opioid use. This approach is not widely used and its efficacy is unknown. A process evaluation alongside the trial will help to assess how the intervention was delivered, looking at the dose of intervention received and the fidelity of the delivery. We will explore how the intervention may have brought about change through the experiences of the participants receiving and the staff delivering the intervention and whether there were contextual factors involved.

Learn More >

EphrinB2/ephB2-mediated myenteric synaptic plasticity: mechanisms underlying the persistent muscle hypercontractility and pain in postinfectious IBS.

Patients with irritable bowel syndrome (IBS) show pain hypersensitivity and smooth muscle hypercontractility in response to colorectal distension (CRD). Synaptic plasticity, a key process of memory formation, in the enteric nervous system may be a novel explanation. This study aimed to explore the regulatory role of ephrinB2/ephB2 in enteric synaptic plasticity and colonic hyperreactive motility in IBS. Postinfectious (PI)-IBS was induced by infection in rats. Isometric contractions of colonic circular muscle strips, particularly neural-mediated contractions, were recorded . Meanwhile, ephrinB2/ephB2-mediated enteric structural and functional synaptic plasticity were assessed in the colonic muscularis, indicating that ephrinB2 and ephB2 were located on enteric nerves and up-regulated in the colonic muscularis of PI-IBS rats. Colonic hypersensitivity to CRD and neural-mediated colonic hypercontractility were present in PI-IBS rats, which were correlated with increased levels of cellular homologous fos protein () and activity-regulated cystoskeleton-associated protein (arc), the synaptic plasticity-related immediate early genes, and were ameliorated by ephB2Fc (an ephB2 receptor blocker) or MK801 (an NMDA receptor inhibitor) exposure. EphrinB2/ephB2 facilitated synaptic sprouting and NMDA receptor-mediated synaptic potentiation in the colonic muscularis of PI-IBS rats and in the longitudinal muscle-myenteric plexus cultures, involving the Erk-MAPK and PI3K-protein kinase B pathways. In conclusion, ephrinB2/ephB2 promoted the synaptic sprouting and potentiation of myenteric nerves involved in persistent muscle hypercontractility and pain in PI-IBS. Hence, ephrinB2/ephB2 may be an emerging target for the treatment of IBS.-Zhang, L., Wang, R., Bai, T., Xiang, X., Qian, W., Song, J., Hou, X. EphrinB2/ephB2-mediated myenteric synaptic plasticity: mechanisms underlying the persistent muscle hypercontractility and pain in postinfectious IBS.

Learn More >

Predictors of Pain Recurrence After Lumbar Facet Joint Injections.

Facet joint injections (FJIs) of anesthetic and corticosteroids are useful for the diagnosis and treatment of low back pain (LBP). In the current study, we evaluated the efficacy of FJI on LBP treatment and the predictive variables of pain recurrence after FJI.

Learn More >

Intra-Venous Lidocaine to Relieve Neuropathic Pain: A Systematic Review and Meta-Analysis.

The prevalence of neuropathic pain is estimated to be between 7 and 10% in the general population. The efficacy of intravenous (IV) lidocaine has been studied by numerous clinical trials on patients with neuropathic pain. The aim of this systematic review and meta-analysis was to evaluate the efficacy of IV lidocaine compared with a placebo for neuropathic pain and secondly to assess the safety of its administration. A literature search on PubMed, Scopus, CENTRAL (Cochrane Central Register of Controlled Trials), and Google scholar databases was performed for relevant studies published up to February 2019. Randomized controlled trials (RCTs) evaluating IV lidocaine treatment for pain relief in patients with neuropathic pain were included. 26 articles met the inclusion criteria. Patients with varied etiology of neuropathic pain were among the patient samples of these studies. Fifteen articles were included for quantitative analysis. Lidocaine was superior to a placebo in relieving neuropathic pain in the early post-infusion period [Mean Difference (MD) = -11.9; 95% Confidence interval (CI): -16.8 to -7; < 0.00001]. Multiple infusions of lidocaine over a period of 4 weeks, however, had no significant effect on reliving neuropathic pain (MD = -0.96; 95% CI: -2.02 to 0.11; = 0.08). IV lidocaine was also associated with a significant number of adverse events compared to a placebo [Odds Ratio (OR) = 7.75; 95% CI: 3.18-18.92; < 0.00001]. Our study indicates that while IV lidocaine is effective in pain control among patients with neuropathic pain in the immediate post-infusion period, it does not have a long-lasting, persistent effect. IV infusions of the drug are associated with an increased risk of side effects compared to a placebo. However, the risk of serious adverse events is negligible. Further, well-designed RCTs evaluating the effects of various dosages and infusion periods of IV lidocaine are required to provide clear guidelines on its clinical use.

Learn More >

Are Individual Learning Experiences More Important Than Heritable Tendencies? A Pilot Twin Study on Placebo Analgesia.

Predicting who will be a placebo responder is a prerequisite to maximize placebo effects in pain treatment and to minimize them in clinical trials. First evidence exists that genetics could affect placebo effects. However, a classical twin study to estimate the relative contribution of genetic influences compared to common and individual environmental influences in explaining interindividual differences in placebo responsiveness has yet not been performed. In a first explorative twin study, 25 monozygotic (MZ) and 14 dizygotic (DZ) healthy twin pairs (27.5 ± 7.7 years; 73% female) were conditioned to the efficacy of a placebo analgesic ointment with an established heat pain paradigm on their non-dominant arm. Placebo analgesia was then tested on their dominant arm. Furthermore, warmth detection thresholds (WDTs) and heat pain thresholds (HPTs) were assessed, and participants filled in questionnaires for the assessment of psychological traits such as depression, anxiety, optimism, pain catastrophizing, and sensitivity to reward and punishment. Their expectations were determined with a visual analog scale. There was a small but significant placebo analgesic effect in both MZ and DZ twins. Estimates of heritability were moderate for WDT only but negligible for HPT, the conditioning response, and placebo analgesia. Common environment did not explain any variance, and the individual environment explained the largest parts. Therefore, the placebo analgesia response can be seen as influenced by individual learning experiences during the conditioning procedure, whereas other variables assessed were not associated. Compared to the individual learning experience, genetic influences seem to play a minor role in explaining variation in placebo analgesia in this experimental paradigm. However, our results are restricted to placebo effects through conditioning on pain in healthy volunteers and should be replicated in larger samples and in patients. Furthermore, potential gene-environment interactions should be further investigated.

Learn More >

Current status of opioid addiction treatment and related preclinical research.

Opioid use disorders (OUDs) are diseases of the brain with behavioral, psychological, neurobiological, and medical manifestations. Vulnerability to OUDs can be affected by factors such as genetic background, environment, stress, and prolonged exposure to μ-opioid agonists for analgesia. Two standard-of-care maintenance medications, methadone and buprenorphine-naloxone, have a long-term positive influence on health of persons with opioid addiction. Buprenorphine and another medication, naltrexone, have also been approved for administration as monthly depot injections. However, neither medication is used as widely as needed, due largely to stigma, insufficient medical education or training, inadequate resources, and inadequate access to treatment. Ongoing directions in the field include (i) personalized approaches leveraging genetic factors for prediction of OUD vulnerability and prognosis, or for targeted pharmacotherapy, and (ii) development of novel analgesic medicines with new neurobiological targets with reduced abuse potential, reduced toxicity, and improved effectiveness, especially for chronic pain states other than cancer pain.

Learn More >

The Pharmacology of Pain Associated With the Monoiodoacetate Model of Osteoarthritis.

The high incidence of osteoarthritis (OA) in an increasingly elderly population anticipates a dramatic rise in the number of people suffering from this disease in the near future. Because pain is the main reason patients seek medical help, effective pain management-which is currently lacking-is paramount to improve the quality of life that OA sufferers desperately seek. Good animal models are, in this day and age, fundamental tools for basic research of new therapeutic pathways. Several animal models of OA have been characterized, but none of them reproduces entirely all symptoms of the disease. Choosing between different animal models depends largely on which aspect of OA one aims to study. Here, we review the current understanding of the monoiodoacetate (MIA) model of OA. MIA injection in the knee joint leads to the progressive disruption of cartilage, which, in turn, is associated with the development of pain-like behavior. There are several reasons why the MIA model of OA seems to be the most adequate to study the pharmacological effect of new drugs in pain associated with OA. First, the pathological changes induced by MIA share many common traits with those observed in human OA (Van Der Kraan et al., 1989; Guingamp et al., 1997; Guzman et al., 2003), including loss of cartilage and alterations in the subchondral bone. The model has been extensively utilized in basic research, which means that the time course of pain-related behaviors and histopathological changes, as well as pharmacological profile, namely of commonly used pain-reducing drugs, is now moderately understood. Also, the severity of the progression of pathological changes can be controlled by grading the concentration of MIA administered. Further, in contrast with other OA models, MIA offers a rapid induction of pain-related phenotypes, with the cost-saving consequence in new drug screening. This model, therefore, may be more predictive of clinical efficacy of novel pharmacological tools than other chronic or acute OA models.

Learn More >

Mast Cells and Sensory Nerves Contribute to Neurogenic Inflammation and Pruritus in Chronic Skin Inflammation.

The intimate interaction between mast cells and sensory nerves can be illustrated by the wheal and surrounding flare in an urticarial reaction in human skin. This reaction is typically associated with an intense itch at the reaction site. Upon activation, cutaneous mast cells release powerful mediators, such as histamine, tryptase, cytokines, and growth factors that can directly stimulate corresponding receptors on itch-mediating sensory nerves. These include, e.g., H1- and H4-receptors, protease-activated receptor-2, IL-31 receptor, and the high-affinity receptor of nerve growth factor (TrkA). On the other hand, sensory nerves can release neuropeptides, including substance P and vasoactive intestinal peptide, that are able to stimulate mast cells to release mediators leading to potentiation of the reciprocal interaction, inflammation, and itch. Even though mast cells are well recognized for their role in allergic skin whealing and urticaria, increasing evidence supports the reciprocal function between mast cells and sensory nerves in neurogenic inflammation in chronic skin diseases, such as psoriasis and atopic dermatitis, which are often characterized by distressing itch, and exacerbated by psychological stress. Increased morphological contacts between mast cells and sensory nerves in the lesional skin in psoriasis and atopic dermatitis as well as experimental models in mice and rats support the essential role for mast cell-sensory nerve communication in consequent pruritus. Therefore, we summarize here the present literature pointing to a close association between mast cells and sensory nerves in pruritic skin diseases as well as review the essential supporting findings on pruritic models in mice and rats.

Learn More >

The dosing of aerobic exercise therapy on experimentally-induced pain in healthy female participants.

Knowledge of efficacious dosing respective to exercise type and pain condition is extremely limited in the literature. This study aimed to determine the impact of dose of moderate intensity treadmill walking on experimentally-induced pain in healthy human participants. Forty females were divided into 4 groups: control (no exercise), low dose exercise (3×/wk), moderate dose exercise (5×/wk) or high dose exercise (10×/wk). Over a 7-day period, subjects performed treadmill walking during assigned exercise days. Both qualitative and quantitative measures of pain were measured at baseline, during the trial, and 24 hrs post-final intervention session via sensitivity thresholds to painful thermal and painful pressure stimulation. Significant effects of treatment were found post-intervention for constant pressure pain intensity (p = 0.0016) and pain unpleasantness ratings (p = 0.0014). Post-hoc tests revealed significant differences between control and moderate and control and high dose groups for constant pressure pain intensity (p = 0.0015), (p = 0.0094), respectively and constant pressure pain unpleasantness (p = 0.0040), (p = 0.0040), respectively. Moderate and high dose groups had the greatest reductions in ratings of pain, suggesting that our lowest dose of exercise was not sufficient to reduce pain and that the moderate dose of exercise may be a sufficient starting dose for exercise-based adjuvant pain therapy.

Learn More >

Behavioral pharmacology of novel kappa opioid receptor antagonists in rats.

New treatments for stress-related disorders including depression, anxiety and Substance Use Disorder are greatly needed. Kappa opioid receptors (KORs) are expressed in central nervous system, including areas implicated in analgesia and affective state. Although KOR agonists share the antinociceptive effects of mu opioid receptor (MOR) agonists, they also tend to produce negative affective states. In contrast, selective KOR antagonists have antidepressant- and anxiolytic-like effects, stimulating interest in their therapeutic potential. The prototypical KOR antagonists (e.g., norBNI, JDTic) have an exceptionally long duration of action that complicates their use in humans, particular in tests to establish safety. This study was designed to test dose- and time-course effects of novel KOR antagonists with the goal of identifying short-acting lead compounds for future medication development.

Learn More >

Pharmacological Blockade of Spinal CXCL3/CXCR2 Signaling by NVP CXCR2 20, a Selective CXCR2 Antagonist, Reduces Neuropathic Pain Following Peripheral Nerve Injury.

Recently, the role of CXCR2 in nociception has been noted. Our studies provide new evidence that the intrathecal administration of its CINC ligands (Cytokine-Induced Neutrophil Chemoattractant; CXCL1-3) induces pain-like behavior in naïve mice, and the effect occurring shortly after administration is associated with the neural location of CXCR2, as confirmed by immunofluorescence. RT-qPCR analysis showed, for the first time, raised levels of spinal CXCR2 after chronic constriction injury (CCI) of the sciatic nerve in rats. Originally, on day 2, we detected escalated levels of the spinal mRNA of all CINCs associated with enhancement of the protein level of CXCL3 lasting until day 7. Intrathecal administration of CXCL3 neutralizing antibody diminished neuropathic pain on day 7 after CCI. Interestingly, CXCL3 is produced in lipopolysaccharide-stimulated microglial, but not astroglial, primary cell cultures. We present the first evidence that chronic intrathecal administrations of the selective CXCR2 antagonist, NVP CXCR2 20, attenuate neuropathic pain symptoms and CXCL3 expression after CCI. Moreover, in naïve mice, this antagonist prevented CXCL3-induced hypersensitivity. However, NVP CXCR2 20 did not diminish glial activation, thus not enhancing morphine/buprenorphine analgesia. These results provide novel insight into the crucial role of CXCR2 in neuropathy based on CXCL3 modulation, which may become a potential therapeutic target in pain treatment.

Learn More >

Supraspinal Shaping of Adaptive Transitions in the State of Functional Connectivity Between Segmentally Distributed Dorsal Horn Neuronal Populations in Response to Nociception and Antinociception.

In the anesthetized cat the correlation between the ongoing cord dorsum potentials (CDPs) recorded from different lumbar spinal segments has a non-random structure, suggesting relatively stable patterns of functional connectivity between the dorsal horn neuronal ensembles involved in the generation of these potentials. During the nociception induced by the intradermic injection of capsaicin, the patterns of segmental correlation between the spontaneous CDPs acquire other non-random configurations that are temporarily reversed to their pre-capsaicin state by the systemic injection of lidocaine, a procedure known to decrease the manifestation of neuropathic pain in both animals and humans. We have now extended these studies and utilized machine learning for the automatic extraction and selection of particular classes of CDPs according to their shapes and amplitudes. By using a Markovian analysis, we disclosed the transitions between the different kinds of CDPs induced by capsaicin and lidocaine and constructed a global model based on the changes in the behavior of the CDPs generated along the whole set of lumbar segments. This allowed the identification of the different states of functional connectivity within the whole ensemble of dorsal horn neurones attained during nociception and their transitory reversal by systemic administration of lidocaine in preparations with the intact neuroaxis and after spinalization. The present observations provide additional information on the state of self-organized criticality that leads to the adaptive behavior of the dorsal horn neuronal networks during nociception and antinociception both shaped by supraspinal descending influences.

Learn More >

Increased neural connectivity between the hypothalamus and cortical resting-state functional networks in chronic migraine.

The findings of resting-state functional MRI studies have suggested that abnormal functional integration between interconnected cortical networks characterises the brain of patients with migraine. The aim of this study was to investigate the functional connectivity between the hypothalamus, brainstem, considered as the migraine generator, and the following areas/networks that are reportedly involved in the pathophysiology of migraine: default mode network (DMN), executive control network, dorsal attention system, and primary and dorsoventral visual networks.

Learn More >

Acupuncture Improves Comorbid Cognitive Impairments Induced by Neuropathic Pain in Mice.

Growing evidence indicates that neuropathic pain is frequently accompanied by cognitive impairments, which aggravate the quality of life of chronic pain patients. Here, we investigated whether acupuncture treatments can improve cognitive dysfunction as well as allodynia induced by neuropathic pain in mice. One week after the left partial sciatic nerve ligation (PSNL), acupuncture treatments on the acupoints GB30-GB34 (AP1), HT7-GV20 (AP2), or control points (CP) were performed for 4 weeks. Notably, the significant attenuations of mechanical allodynia and cognitive impairment were observed in the AP1 group, but not in PSNL, AP2, or CP groups. A random decision forest classifier based on the pain and cognitive functions displayed that the acupuncture group was clearly segregated from the other groups. We also demonstrated that acupuncture restored the reduced field excitatory post-synaptic potentials and was able to elevate the expression levels of glutamate receptors (NR2B and GluR1) in the hippocampus. Moreover, the expressions of Ca/calmodulin-dependent protein kinase II and synaptic proteins (pPSD-95 and pSyn-1) were enhanced by acupuncture treatment. These results suggest that acupuncture can enhance hippocampal long-term action through the regulation of the synaptic efficacy and that acupuncture may provide a viable option for managing both pain and cognitive functions associated with chronic neuropathic pain.

Learn More >

Telephone interventions for co-morbid insomnia and osteoarthritis pain: The OsteoArthritis and therapy for sleep (OATS) randomized trial design.

The OsteoArthritis and Therapy for Sleep (OATS) study is a population-based randomized controlled trial of cognitive behavioral therapy for insomnia (CBTI) with four innovative methodological aims. These are to: (1) Enroll representative participants across Washington state, including those from medically underserved communities; (2) Enroll persons with persistent insomnia and chronic osteoarthritis (OA) pain; (3) Test a scalable CBT-I intervention; and (4) Evaluate patient-reported outcomes (insomnia, pain severity, fatigue, depression) and cost-effectiveness over one year. This paper describes progress towards achieving these aims. The target population was persons age 60+ who had received OA care within the Kaiser Permanente Washington (KPW) health care system. We employed a two-phase screening via mail survey and telephone follow-up, with a 3-week interval between screens to exclude persons with spontaneous improvement in sleep or pain symptoms. Participants were randomized to a 6-session telephone-delivered CBT-I intervention or a 6-session telephone education only control condition (EOC). Blinded outcome assessments (completed online or on mailed paper forms) included primary and secondary sleep and pain outcome measures and quality of life measures. We obtained healthcare utilization from administrative claims data. Intent to treat analyses, including all participants randomized when they scheduled the first telephone session, will be conducted to compare CBT-I and EOC outcomes. The trial will be the largest experimental evaluation of telephone CBT-I to date, and the first to evaluate its cost-effectiveness.

Learn More >

Real-world use of the sufentanil sublingual tablet system for patient-controlled management of acute postoperative pain: a prospective noninterventional study.

: To evaluate the real-life effectiveness, safety, tolerability and patient-reported outcomes (PRO) of the sufentanil sublingual tablet system (SSTS) for postoperative pain management (POPM). : This prospective, multicenter, noninterventional, study included adults with acute moderate to severe postoperative pain who self-administered sufentanil using the SSTS. Main outcome measures were pain intensity at rest (numerical rating scale [NRS]: 0 [no pain] to 10 [most intense pain imaginable]); most intense pain intensity (0-10); 4-point patient assessment of the pain control method ("excellent", "good", "fair", "poor"); patient satisfaction with the pain control level and the method of administration of pain medication (6-point scale: "extremely satisfied", "very satisfied", "satisfied", "dissatisfied", "very dissatisfied", "extremely dissatisfied"). Adverse drug reactions were recorded. : The SSTS reduced resting pain intensity in patients (n = 341) from a mean ± SD NRS score of 5.2 ± 2.3 (at SSTS handover) to 1.8 ± 1.6 (3 day after handover). The proportion of patients with severe pain (for the PRO measure "most intense pain") decreased steadily during the 72 hours of treatment. Overall, 87.1% of patients reported the method of pain control to be "good" or "excellent"; 91.8% reported being "extremely/very satisfied" or "satisfied" with the level of pain control; and 95.9% were at least satisfied with the method of pain medication administration. SSTS safety and tolerability was typical for opioids and as described in the SSTS Summary of Product Characteristics. : The SSTS is a valuable option for real-life POPM and is effective in a wide range of surgical procedures. : European Union electronic Register of Post-Authorization Studies (EU PAS Register) number: EUPAS14689.

Learn More >

Cheek Injection Model for Simultaneous Measurement of Pain and Itch-related Behaviors.

Itch was defined as "an unpleasant cutaneous sensation that provokes a desire to scratch" by Rothman in 1941. In mouse models, scratch bouts are typically counted to evaluate itch induced by pruritogens. However, previous reports have shown that algesic substances also induce scratching behaviors in a mouse neck injection model, which is the most common test used for scratching behaviors. This finding makes it difficult to study itch in mice.  In contrast, capsaicin, a common algogen, reduced scratching behaviors in some neck injection experiments. Therefore, the effect of pain on scratching behaviors remains unclear. It is thus necessary to develop a method to concurrently investigate itch and pain sensation using behavioral tests. Here, a cheek injection model is introduced which can be used to simultaneously measure pain- and itch-related behaviors. In this model, pruritogens induce scratching behaviors while algesic substances induce wiping behaviors. Using this model, lysophosphatidic acid (LPA), an itch mediator found in cholestatic patients with itch, is shown to exclusively induce itch but not pain. However, in mouse models, LPA has been reported to be both a pruritogen and an algogen. Investigation into the effects of LPA in a mouse cheek injection model showed that LPA only induced scratching, but not wiping behaviors. This indicates that LPA acts as a pruritogen similarly in mice and humans, and demonstrates the utility of a cheek injection model for itch research.

Learn More >

Cellular Distribution of Canonical and Putative Cannabinoid Receptors in Canine Cervical Dorsal Root Ganglia.

Growing evidence indicates cannabinoid receptors as potential therapeutic targets for chronic pain. Consequently, there is an increasing interest in developing cannabinoid receptor agonists for treating human and veterinary pain. To better understand the actions of a drug, it is of paramount importance to know the cellular distribution of its specific receptor(s). The distribution of canonical and putative cannabinoid receptors in the peripheral and central nervous system of dogs is still in its infancy. In order to help fill this anatomical gap, the present study has been designed to identify the cellular sites of cannabinoid and cannabinoid-related receptors in canine spinal ganglia. In particular, the cellular distribution of the cannabinoid receptors type 1 and 2 (CB and CB) and putative cannabinoid receptors G protein-coupled receptor 55 (GPR55), nuclear peroxisome proliferator-activated receptor alpha (PPARα), and transient receptor potential vanilloid type 1 (TRPV1) have been immunohistochemically investigated in the C6-C8 cervical ganglia of dogs. About 50% of the neuronal population displayed weak to moderate CB receptor and TRPV1 immunoreactivity, while all of them were CB-positive and nearly 40% also expressed GPR55 immunolabeling. Schwann cells, blood vessel smooth muscle cells, and pericyte-like cells all expressed CB receptor immunoreactivity, endothelial cell being also PPARα-positive. All the satellite glial cells (SGCs) displayed bright GPR55 receptor immunoreactivity. In half of the study dogs, SGCs were also PPARα-positive, and limited to older dogs displayed TRPV1 immunoreactivity. The present study may represent a morphological substrate to consider in order to develop therapeutic strategies against chronic pain.

Learn More >

Sphingosine-1-phosphate receptor 2 modulates pain sensitivity by suppressing the ROS-RUNX3 pathway in a rat model of neuropathy.

Neuropathic pain correlates with a lesion or other dysfunction in the nervous system. Sphingosine-1-phosphate receptor 2 (S1P2) is expressed in the central nervous system and modulates synaptic plasticity. The present study aimed to investigate the role of S1P2 in neuropathic pain caused by chronic constriction injury (CCI). Sprague-Dawley rats were allocated into eight groups (n = 15 for each group): sham, CCI, CCI + green fluorescent protein, CCI + S1P2, CCI + Ctrl-short hairpin RNA (shRNA), CCI + S1P2 shRNA, CCI + S1P2 + CYM-5442, and CCI + S1P2 shRNA + CYM-5442. The CCI model was established via sciatic nerve ligation. S1P2 was overexpressed or knocked down by intrathecal injection of adeno-associated virus-S1P2 (AAV-S1P2) or AAV-S1P2 shRNA. The S1P1 agonist, CYM-5442 (1 mg/kg), was injected intraperitoneally after surgery. S1P2 expression, pain thresholds, apoptosis signaling, inflammation, and oxidative stress in rats were then examined. We found that sciatic nerve injury downregulated S1P2 expression in the spinal cords of rats. S1P2 overexpression enhanced pain thresholds. In contrast, S1P2 knockdown decreased pain thresholds in rats exposed to CCI. CCI and S1P2 silencing increased secretion of interleukin-1β (IL-1β), IL-6, and CCL2, whereas S1P2 overexpression decreased. S1P2 impeded CCI-induced reactive oxygen species (ROS) production and runt-related transcription factors 3 (RUNX3) downregulation, and S1P2 knockdown had the opposite effect. S1P2 overexpression suppressed Bax and active caspase 3 expression and promoted Bcl-2 expression, whereas loss of S1P2 reversed their expression. Additionally, S1P1 activation counteracted the effect of S1P2 on pain sensitivity. In conclusion, S1P2 is downregulated in CCI rats and may help modulate neuropathic pain via the ROS/RUNX3 pathway.

Learn More >

Factors affecting the therapeutic effect of botulinum toxin A on trigeminal neuralgia: A follow-up retrospective study of 152 patients.

Botulinum toxin A (BTX-A) is a promising therapeutic modality against trigeminal neuralgia (TN) with certain controversies pertaining to its application. To provide further information on factors influencing the treatment outcomes of BTX-A, a retrospective study with 152 patients with TN treated with BTX-A was performed. The starting time and duration of the therapeutic effect, as well as side effects, of BTX-A in the treatment of TN were analyzed by sex, age, course of disease, number of branches and injected dose. A total of 136 patients exhibited symptom improvement within 2 weeks following BTX-A treatment as evaluated using a visual analog scale (VAS). The effect of BTX-A was sustained throughout the initial 6 months of the follow-up and was demonstrated to persist for as long as 28 months. Female sex, short disease course and high injection dose (>70 units) were associated with lower long-term VAS scores. Patients receiving short-term medium-(50-70 units) or high-dose injections were more likely to be completely cured. Patients with a median disease course (1-10 years) or multiple branches were more likely to exhibit facial asymmetry. Based on the stratified analysis, female patients with a median disease course (1-10 years) exhibited a higher incidence of side effects and male patients achieved better treatment outcomes with high BTX-A doses. BTX-A effectively alleviated patients with TN in both short or long term, although the treatment efficacy may depend on patient characteristics.

Learn More >

How effective is ketamine in the management of chronic neuropathic pain?

Learn More >

The Nordic Maintenance Care Program: Does psychological profile modify the treatment effect of a preventive manual therapy intervention? A secondary analysis of a pragmatic randomized controlled trial.

Chiropractic maintenance care is effective as secondary/tertiary prevention of non-specific low back pain (LBP), but the potential effect moderation by psychological characteristics is unknown. The objective was to investigate whether patients in specific psychological sub-groups had different responses to MC with regard to the total number of days with bothersome pain and the number of treatments.

Learn More >

Impact of a Standardized Multimodal Analgesia Protocol on Opioid Prescriptions After Common Arthroscopic Procedures.

Excessive prescription of opioids has become a national problem. Providers must attempt to decrease the amount of opioids prescribed while still providing patients with adequate pain relief after surgery.

Learn More >

Identifying pain susceptibility phenotypes in knee osteoarthritis.

Knee pain in osteoarthritis is complex and complicated by the fact that osteoarthritis is considered to be a disorder of multiple phenotypes. This complexity challenges our understanding as to why some people remain relatively symptom-free, while others progress to persistent pain. One approach to understanding the mechanisms underlying the transition to persistent pain is by identifying pain susceptibility phenotypes in people with or at risk of knee osteoarthritis. Using variables representative of the multidimensional nature of pain in people who were free of persistent pain, we identified four phenotypes characterised by low pressure pain thresholds and temporal summation and not psychosocial factors in those who developed persistent pain two years later. The group with the highest proportion of low pressure pain thresholds and a moderate proportion with facilitated temporal summation had twice the odds of developing persistent knee pain. This work provides preliminary insights into the critical importance of altered neurobiological mechanisms of pain signalling that contributes to development of chronic, persistent pain in knee osteoarthritis.

Learn More >

TRPV1 and TRPV1-Expressing Nociceptors Mediate Orofacial Pain Behaviors in a Mouse Model of Orthodontic Tooth Movement.

Orthodontic force produces mechanical irritation and inflammation in the periodontium, which is inevitably accompanied by pain. Despite its prevalence, treatment of orthodontic pain is ineffective. Elucidating underlying neural mechanisms is critical to improving the management of orthodontic pain. We have assessed the contribution of transient receptor potential vanilloid subtype 1 (TRPV1) and the TRPV1-expressing subset of nociceptive afferents to pain behaviors induced by orthodontic force in mice. Microfocus X-ray computed tomography analysis showed that application of an orthodontic force of 10 g to the maxillary first molar produced reliable tooth movement in mice. Mouse grimace scale (MGS) was evaluated as an indication of non-evoked spontaneous pain and bite force (BF) was measured for assessing bite-evoked nocifensive behaviors. Orthodontic force increased MGS and decreased BF, both of which were interpreted as increased levels of pain. These behaviors peaked at 1d and returned near to the sham level at 7d. Retrograde labeling and immunohistochemical assays showed TRPV1-expressing peptidergic afferents are abundantly projected to the periodontium. Direct injection of resiniferatoxin into trigeminal ganglia (TG) decreased TRPV1-expressing afferents by half in the targeted region of TG. The chemical ablation of TRPV1-expressing afferents significantly attenuated orthodontic pain behaviors assessed by MGS and BF. Consistently, the knockout of TRPV1 also attenuated orthodontic force-induced changes in MGS and BF. These results suggest that TRPV1 and TRPV1-expressing trigeminal nociceptors constitute a primary pathway mediating orthodontic pain behaviors in mice. This model will be useful for mechanistic studies on orthodontic pain aimed at developing novel approaches for painless orthodontics.

Learn More >

Neuroimaging Studies of Antidepressant Placebo Effects: Challenges and Opportunities.

Over the last two decades, neuroscientists have used antidepressant placebo probes to examine the biological mechanisms implicated in expectancies of mood improvement.However, findings from these studies have yet to elucidate a model-based theory that would explain the mechanisms through which antidepressant expectancies evolve to induce persistent mood changes. Compared to other fields, the development of experimental models of antidepressant placebo effects faces significant challenges, such as the delayed mechanism of action of conventional antidepressants and the complex internal dynamics of mood. Still, recent neuroimaging studies of antidepressant placebo effects have shown remarkable similarities to those observed in other disciplines (e.g., placebo analgesia), such as placebo-induced increased µ-opioid signaling and blood-oxygen-level dependent (BOLD) responses in areas involved in cognitive control, the representation of expected values and reward and emotional processing. This review will summarize these findings and the challenges and opportunities that arise from applying methodologies used in the field of placebo analgesia into the field of antidepressant placebo effects.

Learn More >

Increased activation of the pregenual anterior cingulate cortex to citalopram challenge in migraine: an fMRI study.

The anterior cingulate cortex (ACC) is a key structure of the pain processing network. Several structural and functional alterations of this brain area have been found in migraine. In addition, altered serotonergic neurotransmission has been repeatedly implicated in the pathophysiology of migraine, although the exact mechanism is not known. Thus, our aim was to investigate the relationship between acute increase of brain serotonin (5-HT) level and the activation changes of the ACC using pharmacological challenge MRI (phMRI) in migraine patients and healthy controls.

Learn More >

Brivaracetam attenuates pain behaviors in a murine model of neuropathic pain.

The anti-seizure racetams may provide novel molecular insights into neuropathic pain due to their unique mechanism involving synaptic vesicle glycoprotein 2A (SV2A). Anti-allodynic effects of levetiracetam (LEV) have been shown in animal models of neuropathic pain. Here, we studied the effect of brivaracetam (BRV), which binds to SV2A with 20-fold greater affinity, and has fewer off-target effects.

Learn More >

Acupuncture for Chemotherapy-Induced Peripheral Neuropathy in Breast Cancer Survivors: A Randomized Controlled Pilot Trial.

Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most debilitating long-term side effects in breast cancer survivors. We conducted a randomized controlled pilot trial to assess the feasibility, safety, and effects of an acupuncture intervention on CIPN in this population.

Learn More >

Effects of Early Exposure of Isoflurane on Chronic Pain via the Mammalian Target of Rapamycin Signal Pathway.

Persistent post-surgical pain (PPSP) is a chronic pain condition, often with neuropathic features, that occurs in approximately 20% of children who undergo surgery. The biological basis of PPSP has not been elucidated. Anesthetic drugs can have lasting effects on the developing nervous system, although the clinical impact of this phenomenon is unknown. Here, we used a mouse model to test the hypothesis that early developmental exposure to isoflurane causes cellular and molecular alteration in the pain perception circuitry that causes a predisposition to chronic, neuropathic pain via a pathologic upregulation of the mammalian target of the rapamycin (mTOR) signaling pathway. Mice were exposed to isoflurane at postnatal day 7 and select cohorts were treated with rapamycin, an mTOR pathway inhibitor. Behavioral tests conducted 2 months later showed increased evidence of neuropathic pain, which did not occur in rapamycin-treated animals. Immunohistochemistry showed neuronal activity was chronically increased in the insular cortex, anterior cingulate cortex, and spinal dorsal horn, and activity was attenuated by rapamycin. Immunohistochemistry and western blotting (WB) showed a co-incident chronic, abnormal upregulation in mTOR activity. We conclude that early isoflurane exposure alters the development of pain circuits and has the potential to contribute to PPSP and/or other pain syndromes.

Learn More >

The pharmacology of itch.

The article has been co-published with permission in British Journal of Dermatology and British Journal of Pharmacology. The articles are identical except for minor stylistic and spelling differences in keeping with each journal's style. Either citation can be used when citing this article.

Learn More >

Levo-corydalmine Attenuates Vincristine-Induced Neuropathic Pain in Mice by Upregulating the Nrf2/HO-1/CO Pathway to Inhibit Connexin 43 Expression.

Antimicrotubulin chemotherapeutic agents, including plant-derived vincaalkaloids such as vincristine, can cause peripheral neuropathic pain. Exogenously activated heme oxygenase 1 (HO-1) is a potential therapy for chemotherapy-induced neuroinflammation. In this study, we investigated a role for Nrf2/HO-1/CO in mediating vincristine-induced neuroinflammation by inhibiting connexin 43 (Cx43) production in the spinal cord following the intrathecal application of the HO-1 inducer protoporphyrin IX cobalt chloride (CoPP) or inhibitor protoporphyrin IX zinc (ZnPP), and we analyzed the underlying mechanisms by which levo-corydalmine (l-CDL, a tetrahydroprotoberberine) attenuates vincristine-induced pain. Treatment with levo-corydalmine or oxycodone hydrochloride (a semisynthetic opioid analgesic, used as a positive control) attenuated vincristine-induced persistent pain hypersensitivity and degeneration of the sciatic nerve. In addition, the increased prevalence of atypical mitochondria induced by vincristine was ameliorated by l-CDL in both A-fibers and C-fibers. Next, we evaluated whether nuclear factor E2-related factor 2 (Nrf2), an upstream activator of HO-1, directly bound to the HO-1 promoter sequence and degraded heme to produce carbon monoxide (CO) following stimulation with vincristine. Notably, l-CDL dose-dependently increased HO-1/CO expression by activating Nrf2 to inhibit Cx43 expression in both the spinal cord and in cultured astrocytes stimulated with TNF-α, corresponding to decreased Cx43-mediated hemichannel. Furthermore, l-CDL had no effect on Cx43 following the silencing of the HO-1 gene. Taken together, our findings reveal a novel mechanism by which Nrf2/HO-1/CO mediates Cx43 expression in vincristine-induced neuropathic pain. In addition, the present findings suggest that l-CDL likely protects against nerve damage and attenuates vincristine-induced neuroinflammation by upregulating Nrf2/HO-1/CO to inhibit Cx43 expression.

Learn More >

Comorbidity of Pain and Depression in a Lumbar Disc Herniation Model: Biochemical Alterations and the Effects of Fluoxetine.

Depression is one of the most common comorbidities in patients with chronic low back pain. However, the mechanisms of depression in chronic low back pain patients and the effect of antidepressants on the comorbidity of pain and depression need to be further explored. The establishment of the appropriate animal models and of more effective therapies is critical for this comorbidity. Lumbar disc herniation (LDH) is the most common disease that causes low back pain. The current study examined whether an LDH model shows behavioral and biochemical alterations that are in accordance with the characteristics of the comorbidity of pain and depression and tested the effect of fluoxetine (FLX) on these measures. The current study examined whether an LDH model showed the behavioral and biochemical alterations that were in accordance with the characteristics of the comorbidity of pain and depression and tested the effect of FLX on these measures. The LDH animal model was generated by the implantation of the autologous nucleus pulposus on the left L5 nerve root just proximal to the dorsal root ganglion in Wistar rats. Pain intensity was evaluated by mechanical allodynia and thermal hyperalgesia, and changes in depressive behavior were examined by the taste preference and forced swim tests. Hippocampal serotonin (5-HT) levels were measured by liquid chromatography-mass spectrometry, and tumor necrosis factor-α (TNF-α) mRNA was quantified using real-time reverse transcriptase PCR. LDH resulted in chronic pain, which further induced depressive behavior that persisted for 6 weeks after surgery. There were decreased 5-HT concentrations and upregulated TNF-α mRNA levels that were accompanied by behavioral changes. FLX treatment improved depressive behavior and moderately alleviated pain through increased 5-HT concentrations, and inhibited TNF-α mRNA expression. In summary, our studies provide initial evidence that the LDH chronic pain model might serve as a model of the comorbidity of low back pain and depression. The finding that FLX improved depressive behavior and pain through normalized 5-HT concentrations and TNF-α mRNA expression establishes the initial mechanism of the comorbidity of pain and depression.

Learn More >

The effect of spinal manipulative therapy on heart rate variability and pain in patients with chronic neck pain: a randomized controlled trial.

Recent experimental research has suggested that spinal manipulative therapy (SMT) may reduce pain through modulation of the ascending pain signals and/or the central pain-regulating mechanisms. People with persistent neck pain (NP) have also been found to have disturbances in autonomic nervous system (ANS) regulation. A common way to study the ANS is to measure heart rate variability (HRV). It is not known whether deviations in HRV are related to changes in pain perception or to the treatment response to SMT. Commonly, an individual in pain will experience pain reduction when exposed to a second pain stimulus, a mechanism known as conditioned pain modulation (CPM). Patients with persistent pain have been found to have a reduced CPM reaction. It is not known whether this is predictive of treatment response to SMT. The aim of the study is to examine the effects of SMT on HRV and pain. Further, a secondary aim is to test whether a CPM test can be used to predict treatment response in a population of patients with recurrent and persistent NP.

Learn More >

Mitogen-Activated Protein Kinase Signaling Mediates Morphine Induced-Delayed Hyperalgesia.

The use of morphine, the standard opioid drug, is limited by its undesirable effects, such as tolerance, physical dependence, and hyperalgesia (increased pain sensitivity). Clinical and preclinical studies have reported development of hyperalgesia after prolonged opioid administration or after a single dose of intrathecal (i.t.) morphine in uninjured rats. However, whether a single standard systemic morphine dose is sufficient to decrease the nociceptive threshold in rats is unknown. Here, we showed that a single morphine subcutaneous injection induces analgesia followed by a long-lasting delayed hyperalgesia in uninjured and PGE2 sensitized rats. The i.t injection of extracellular signal-regulated kinase (ERK) inhibitor blocked morphine-induced analgesia, without interfering with the morphine-induced hyperalgesia. However, i.t. injection of SB20358, a p38 inhibitor and SP660125, a JNK inhibitor, decreased the morphine-induced hyperalgesia. Consistently with the behavioral data, Western Blot analysis showed that ERK is more phosphorylated 1 h after morphine, i.e., when the analgesia is detected. Moreover, phospho-p38 and phospho-JNK levels are upregulated 96 h after morphine injection, time that coincides with the hyperalgesic effect. Intrathecal (i.t.) oligodeoxynucleotide (ODN) antisense to cAMP-responsive element binding protein (CREB) attenuated morphine-induced hyperalgesia. Real-time polymerase chain reaction (RT-PCR) analysis showed that CREB downstream genes expressions were significantly up-regulated 96 h after morphine injection in spinal cord. Together, our data suggest that central ERK is involved in the analgesic and hyperalgesic effects of morphine while JNK, p38, and CREB are involved in the morphine-induced delayed hyperalgesia.

Learn More >

Do sociodemographic features, pain sensitivity or pain catastrophizing relate to clinic-based adherence to physiotherapy in people suffering from chronic spinal pain? Secondary analysis of a randomized clinical trial.

Examining whether socio-demographic variables, pain or functionality are related to the degree of clinic-based therapy adherence in patients suffering from nonspecific chronic spinal pain (nCSP).

Learn More >

Psychological factors are associated with local and generalized pressure pain hypersensitivity, pain intensity, and function in people with chronic shoulder pain: A cross-sectional study.

To explore the association between psychological factors and shoulder pain intensity, function, as well as local and generalized pressure pain hypersensitivity.

Learn More >

Pain and Pruritus: a study of their similarities and differences.

Pruritus is one of the most common dermatologic complaints and, as the most common dermatologic symptom, is a major contributor to frequent dermatology visits. Chronic pruritus mirrors another major medical condition faced by millions of Americans each year – chronic pain. In older literature, pain and pruritus were thought to have been conveyed by the same C fiber, and the proportion contributing to pruritus was just a small subset of this general fiber. Overall, pain and pruritus share many integral similarities. Although these sensations both initiate the body's awareness to injury, pain and itch may have evolved for sensing different damages such as a burrowing parasite or a noxious stimulus, respectively. This seems to have been validated through analyses of their pathophysiology, acute and chronic conditions, and treatment modalities. However, their symptoms and intrinsic mechanisms vary considerably. It is important to view pruritus in more of an overall, whole body experience, rather than just the sensory aspect. Future studies should investigate the psychological treatment of chronic pruritus, considering the immense similarities with its chronic pain counterpart.

Learn More >

Effect of lacosamide in peripheral neuropathic pain: study protocol for a randomized, placebo-controlled, phenotype-stratified trial.

Neuropathic pain is a common pain condition that has a major negative impact on health-related quality of life. However, despite decades of research, it remains difficult to treat neuropathic pain. Lacosamide is a sodium-channel blocker that is efficacious in animal models of neuropathic pain. In humans, its effect in neuropathic pain is inconclusive, based on inconsistent results and very large placebo responses. Previous trials have not used patient stratification or looked for predictors for response.

Learn More >

What is Needed for Evidence-Based Dietary Recommendations for Migraine: A Call to Action for Nutrition and Microbiome Research.

The gastrointestinal symptoms of migraine attacks have invited numerous dietary hypotheses for migraine etiology through the centuries. Substantial efforts have been dedicated to identifying dietary interventions for migraine attack prevention, with limited success. Meanwhile, mounting evidence suggests that the reverse relationship may also exist – that the biological mechanisms of migraine may influence dietary intake. More likely, the truth involves some combination of both, where the disease influences food intake, and the foods eaten impact the manifestations of the disease. In addition, the gut's microbiota is increasingly suspected to influence the migraine brain via the gut-brain axis, though these hypotheses remain largely unsubstantiated.

Learn More >

Study protocol for a randomised double-blinded, sham-controlled, prospective, cross-over clinical trial of vagal neuromodulation for pain treatment in patients with chronic pancreatitis.

The management of chronic pancreatitis (CP) is challenging and requires a personalised approach focused on the individual patient's main symptoms. Abdominal pain is the most prominent symptom in CP, where central pain mechanisms, including sensitisation and impaired pain modulation, often are involved. Recent clinical studies suggest that vagal nerve stimulation (VNS) induces analgesic effects through the modulation of central pain pathways. This study aims to investigate the effect of 2 weeks transcutaneous VNS (t-VNS) on clinical pain in patients with CP, in comparison to the effect of sham treatment.

Learn More >

Current Evidence on Potential Uses of MicroRNA Biomarkers for Migraine: From Diagnosis to Treatment.

Migraine is a disabling and recurrent neurological disorder characterized by headache attacks that are often accompanied by sensory and motor disturbances. The value and importance of reliable biomarkers in migraine have been long recognized and a diverse range of biomarkers from biological samples to electrophysiological patterns and brain imaging has been proposed. There is still no consensus on specific biomarker(s) for migraine. Ideally, not a single but a battery of biomarkers would provide a multidisciplinary way to understand and treat migraine better. Translational research has witnessed an escalating number of studies on microRNAs (miRNAs) during the last decade. Identification of the first miRNA occurred in 1993, and currently more than 2000 human miRNAs have been recognized. miRNAs are a group of endogenous small non-coding molecules that play a key role in post-transcriptional gene processes and hence are involved in health and disease. miRNAs have already been found to be involved in the onset and progression of several human disorders including chronic pain conditions; however, there have been far fewer studies in migraine and other headaches. Current evidence does suggest that miRNAs play a role in migraine and its relief and hence these molecules are proposed as potential migraine biomarkers. This review updates the current evidence for the role of miRNAs in migraine; including their potential as biomarkers, with a role in understanding of its pathogenesis, the population at risk, diagnosis, patient stratification, chronification risk factors, response to treatments, and miRNA-based therapeutic options. Limitations exist and further research is required to completely unwrap the potential of miRNAs in migraine research and practice.

Learn More >

Domains of chronic low back pain and assessing treatment effectiveness: A clinical perspective.

Chronic non-specific low back pain (CLBP) is a common clinical condition that has impacts at both the individual and societal level. Pain intensity is a primary outcome used in clinical practice to quantify the severity of CLBP and the efficacy of its treatment, however, pain is a subjective experience that is impacted by a multitude of factors. Moreover, differences in effect sizes for pain intensity are not observed between common conservative treatments, such as spinal manipulative therapy, cognitive behavioural therapy, acupuncture and exercise training. As pain science evolves, the biopsychosocial model is gaining interest in its application for CLBP management. The aim of this paper is to discuss our current scientific understanding of pain and present why additional factors should be considered in conservative CLBP management. In addition to pain intensity, we recommend that clinicians should consider assessing the multidimensional nature of CLBP by including physical (disability, muscular strength and endurance, performance in activities of daily living and body composition), psychological (kinesiophobia, fear-avoidance, pain catastrophizing, pain self-efficacy, depression, anxiety and sleep quality), social (social functioning and work absenteeism) and health-related quality of life measures, depending on what is deemed relevant for each individual. This review also provides practical recommendations to clinicians for the assessment of outcomes beyond pain intensity, including information on how large a change must be for it to be considered 'real' in an individual patient. This information can guide treatment selection when working with an individual with CLBP.

Learn More >

Top-down cortical control of acute and chronic pain.

Acute pain has an evolutionary role for the detection of and response to physical harm. In some cases, however, acute pain can impair function and lead to other morbidities. Chronic pain, meanwhile, can present as a psychopathological condition that significantly interferes with daily living. Most basic and translational pain research has focused on the molecular and cellular mechanisms in the spinal and peripheral nervous systems. In contrast, the brain plays a key role in the affective manifestation and cognitive control of pain. In particular, several cortical regions, such as the somatosensory cortex, prefrontal cortex, insular, and anterior cingulate cortex, are well-known to be activated by acute pain signals, and neurons in these regions have been demonstrated to undergo changes in response to chronic pain. Furthermore, these cortical regions can project to a number of forebrain and limbic structures to exert powerful top-down control of not only sensory pain transmission but also affective pain expression, and such cortical regulatory mechanisms are particularly relevant in chronic pain states. Newer techniques have emerged that allow detailed studies of central pain circuits in animal models, as well as how such circuits are modified by the presence of chronic pain and other predisposing psychosomatic factors. These mechanistic approaches can complement imaging in human studies. At the therapeutic level, a number of pharmacological and non-pharmacological interventions have recently been shown to engage these top-down control systems to provide analgesia. In this review, we will discuss how pain signals reach important cortical regions, and how these regions in turn project to sub-cortical areas of the brain to exert profound modulation of the pain experience. In addition, we will discuss the clinical relevance of such top-down pain regulation mechanisms.

Learn More >

Search