I am a
Home I AM A Search Login
PRF-Logo-768x240

Fostering discussion and collaboration that speeds up the acquisition of new knowledge and its translation into novel pain treatments.

 

PRF News
Papers Of The Week
2023 Dec 01 - Exp Mol Med
Editor's Pick

IgSF11 deficiency alleviates osteoarthritis in mice by suppressing early subchondral bone changes.

Authors: Kim GM, Kim J, Lee JY, Park MC, Lee SY
Read Abstract
Osteoarthritis (OA) is a degenerative joint disease. While it is classically characterized by articular cartilage destruction, OA affects all tissues in the joints and is thus also accompanied by local inflammation, subchondral bone changes, and persistent pain. However, our understanding of the underlying subchondral bone dynamics during OA progression is poor. Here, we demonstrate the contribution of immunoglobulin superfamily 11 (IgSF11) to OA subchondral bone remodeling by using a murine model. In particular, IgSF11 was quickly expressed by differentiating osteoclasts and upregulated in subchondral bone soon after destabilization-of-the-medial-meniscus (DMM)-induced OA. In mice, IgSF11 deficiency not only suppressed subchondral bone changes in OA but also blocked cartilage destruction. The IgSF11-expressing cells in OA subchondral bone were found to be involved in osteoclast maturation and bone resorption and colocalized with receptor-activator of nuclear-factor κ-B (RANK), the key osteoclast differentiation factor. Thus, our study shows that blocking early subchondral bone changes in OA can ameliorate articular cartilage destruction in OA.

2023 Nov 29 - Adv Mater
Editor's Pick

A Biomimetic Nociceptor Using Centrosymmetric Crystals for Machine Intelligence.

Authors: Wang W, Wang Y, Xiang L, Chen L, Yu L, Pan A, Tan J, Yuan Q
Read Abstract

Pain sensation is a crucial aspect of perception in the body. Force-activated nociceptors encode electrochemical signals and yield multilevel information of pain, thus enabling smart feedback. Inspired by the natural template, multi-dimensional mechano-sensing materials provide promising approaches for biomimetic nociceptors in intelligent terminals. However, the reliance on non-centrosymmetric crystals has narrowed the range of these materials. Here we report centrosymmetric crystal Cr -doped zinc gallogermanate (ZGGO:Cr) with multi-dimensional mechano-sensing, eliminating the limitation of crystal structure. Under forces, ZGGO:Cr generates electrical signals imitating those of neuronal systems, and produces luminescence for spatial mapping of mechanical stimuli, suggesting a path toward bionic pain perception. On that basis, we developed a wireless biomimetic nociceptor system and achieved a smart pain reflex in a robotic hand and robot-assisted biopsy surgery of rat and dog. This article is protected by copyright. All rights reserved.


2023 Nov 28 - Pain
Editor's Pick

Whole-genome methylation profiling reveals regions associated with painful temporomandibular disorders and active recovery processes.

Authors: Ao X, Parisien M, Fillingim RB, Ohrbach R, Slade GD, Diatchenko L, Smith SB
Read Abstract

Temporomandibular disorders (TMDs), collectively representing one of the most common chronic pain conditions, have a substantial genetic component, but genetic variation alone has not fully explained the heritability of TMD risk. Reasoning that the unexplained heritability may be because of DNA methylation, an epigenetic phenomenon, we measured genome-wide DNA methylation using the Illumina MethylationEPIC platform with blood samples from participants in the Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA) study. Associations with chronic TMD used methylation data from 496 chronic painful TMD cases and 452 TMD-free controls. Changes in methylation between enrollment and a 6-month follow-up visit were determined for a separate sample of 62 people with recent-onset painful TMD. More than 750,000 individual CpG sites were examined for association with chronic painful TMD. Six differentially methylated regions were significantly (P < 5 × 10-8) associated with chronic painful TMD, including loci near genes involved in the regulation of inflammatory and neuronal response. A majority of loci were similarly differentially methylated in acute TMD consistent with observed transience or persistence of symptoms at follow-up. Functional characterization of the identified regions found relationships between methylation at these loci and nearby genetic variation contributing to chronic painful TMD and with gene expression of proximal genes. These findings reveal epigenetic contributions to chronic painful TMD through methylation of the genes FMOD, PM20D1, ZNF718, ZFP57, and RNF39, following the development of acute painful TMD. Epigenetic regulation of these genes likely contributes to the trajectory of transcriptional events in affected tissues leading to resolution or chronicity of pain.


2023 Nov 22 - Cell
Editor's Pick

S. aureus drives itch and scratch-induced skin damage through a V8 protease-PAR1 axis.

Authors: Deng L, Costa F, Blake KJ, Choi S, Chandrabalan A, Yousuf MS, Shiers S, Dubreuil D, Vega-Mendoza D, Rolland C, Deraison C, Voisin T, Bagood MD, Wesemann L, Frey AM, Palumbo JS, Wainger BJ, Gallo RL, Leyva-Castillo JM, Vergnolle N, Price TJ, Ramachandran R, Horswill AR, Chiu IM
Read Abstract

Itch is an unpleasant sensation that evokes a desire to scratch. The skin barrier is constantly exposed to microbes and their products. However, the role of microbes in itch generation is unknown. Here, we show that Staphylococcus aureus, a bacterial pathogen associated with itchy skin diseases, directly activates pruriceptor sensory neurons to drive itch. Epicutaneous S. aureus exposure causes robust itch and scratch-induced damage. By testing multiple isogenic bacterial mutants for virulence factors, we identify the S. aureus serine protease V8 as a critical mediator in evoking spontaneous itch and alloknesis. V8 cleaves proteinase-activated receptor 1 (PAR1) on mouse and human sensory neurons. Targeting PAR1 through genetic deficiency, small interfering RNA (siRNA) knockdown, or pharmacological blockade decreases itch and skin damage caused by V8 and S. aureus exposure. Thus, we identify a mechanism of action for a pruritogenic bacterial factor and demonstrate the potential of inhibiting V8-PAR1 signaling to treat itch.


2023 Nov 20 - J Neurosci
Editor's Pick

Chronic morphine induces adaptations in opioid receptor signaling in a thalamo-striatal circuit that are location-dependent, sex-specific and regulated by mu opioid receptor phosphorylation.

Authors: Jaeckel ER, Herrera YN, Schulz S, Birdsong WT
Read Abstract

Chronic opioid exposure induces tolerance to the pain-relieving effects of opioids but sensitization to some other effects. While the occurrence of these adaptations is well-understood, the underlying cellular mechanisms are less clear. This study aimed to determine how chronic treatment with morphine, a prototypical opioid agonist, induced adaptations to subsequent morphine signaling in different subcellular contexts. Opioids acutely inhibit glutamatergic transmission from medial thalamic (MThal) inputs to the dorsomedial striatum (DMS) via activity at μ-opioid receptors (MORs). MORs are present in somatic and presynaptic compartments of MThal neurons terminating in the DMS. We investigated the effects of chronic morphine treatment on subsequent morphine signaling at MThal-DMS synapses and MThal cell bodies in male and female mice. Surprisingly, chronic morphine treatment increased subsequent morphine inhibition of MThal-DMS synaptic transmission (morphine facilitation) in male, but not female, mice. At MThal cell bodies, chronic morphine treatment decreased subsequent morphine activation of potassium conductance (morphine tolerance) in both male and female mice. In knockin mice expressing phosphorylation-deficient MORs, chronic morphine treatment resulted in tolerance to, rather than facilitation of, subsequent morphine signaling at MThal-DMS terminals, suggesting phosphorylation-deficiency unmasks adaptations that counter the facilitation observed at presynaptic terminals in wild-type mice. The results of this study suggest that the effects of chronic morphine exposure are not ubiquitous; rather adaptations in MOR function may be determined by multiple factors such as subcellular receptor distribution, influence of local circuitry and sex. Repeated opioid use causes tolerance to their pain-relieving effects but can exacerbate some undesirable effects limiting their clinical utility. A detailed understanding of the physiological adaptations that contribute to the development of tolerance is critical to develop mitigation strategies. This study found that within medial thalamic projection neurons, chronic morphine treatment induced adaptations that were not ubiquitous. Instead, prior morphine exposure increased morphine effects at thalamic terminals in the dorsomedial striatum only in male mice, but decreased morphine effects at medial thalamic cell bodies in both sexes. In mice lacking phosphorylation sites on MOR, chronic morphine treatment decreased, rather than increased, morphine effects at thalamic terminals in the dorsomedial striatum, implicating receptor phosphorylation in driving adaptations observed in wild-type mice.


2023 Nov 09 - Neuron
Editor's Pick

Absence of paresthesia during high-rate spinal cord stimulation reveals importance of synchrony for sensations evoked by electrical stimulation.

Authors: Sagalajev B, Zhang T, Abdollahi N, Yousefpour N, Medlock L, Al-Basha D, Ribeiro-da-Silva A, Esteller R, Ratté S, Prescott SA
Read Abstract

Electrically activating mechanoreceptive afferents inhibits pain. However, paresthesia evoked by spinal cord stimulation (SCS) at 40-60 Hz becomes uncomfortable at high pulse amplitudes, limiting SCS “dosage.” Kilohertz-frequency SCS produces analgesia without paresthesia and is thought, therefore, not to activate afferent axons. We show that paresthesia is absent not because axons do not spike but because they spike asynchronously. In a pain patient, selectively increasing SCS frequency abolished paresthesia and epidurally recorded evoked compound action potentials (ECAPs). Dependence of ECAP amplitude on SCS frequency was reproduced in pigs, rats, and computer simulations and is explained by overdrive desynchronization: spikes desychronize when axons are stimulated faster than their refractory period. Unlike synchronous spikes, asynchronous spikes fail to produce paresthesia because their transmission to somatosensory cortex is blocked by feedforward inhibition. Our results demonstrate how stimulation frequency impacts synchrony based on axon properties and how synchrony impacts sensation based on circuit properties.


2023 Nov 21 - Proc Natl Acad Sci U S A
Editor's Pick

A peptidomimetic modulator of the Ca2.2 N-type calcium channel for chronic pain.

Authors: Gomez K, Santiago U, Nelson TS, Allen HN, Calderon-Rivera A, Hestehave S, Rodríguez Palma EJ, Zhou Y, Duran P, Loya-Lopez S, Zhu E, Kumar U, Shields R, Koseli E, McKiver B, Giuvelis D, Zuo W, Inyang KE, Dorame A, Chefdeville A, Ran D, Perez-Miller S, Lu Y, Liu X, Handoko , Arora PS, Patek M, Moutal A, Khanna M, Hu H, Laumet G, King T, Wang J, Damaj MI, Korczeniewska OA, Camacho CJ, Khanna R
Read Abstract

Transmembrane Ca2.2 (N-type) voltage-gated calcium channels are genetically and pharmacologically validated, clinically relevant pain targets. Clinical block of Ca2.2 (e.g., with Prialt/Ziconotide) or indirect modulation [e.g., with gabapentinoids such as Gabapentin (GBP)] mitigates chronic pain but is encumbered by side effects and abuse liability. The cytosolic auxiliary subunit collapsin response mediator protein 2 (CRMP2) targets Ca2.2 to the sensory neuron membrane and regulates their function via an intrinsically disordered motif. A CRMP2-derived peptide (CBD3) uncouples the Ca2.2-CRMP2 interaction to inhibit calcium influx, transmitter release, and pain. We developed and applied a molecular dynamics approach to identify the dipeptide in CBD3 as the anchoring Ca2.2 motif and designed pharmacophore models to screen 27 million compounds on the open-access server ZincPharmer. Of 200 curated hits, 77 compounds were assessed using depolarization-evoked calcium influx in rat dorsal root ganglion neurons. Nine small molecules were tested electrophysiologically, while one (CBD3063) was also evaluated biochemically and behaviorally. CBD3063 uncoupled Ca2.2 from CRMP2, reduced membrane Ca2.2 expression and Ca currents, decreased neurotransmission, reduced fiber photometry-based calcium responses in response to mechanical stimulation, and reversed neuropathic and inflammatory pain across sexes in two different species without changes in sensory, sedative, depressive, and cognitive behaviors. CBD3063 is a selective, first-in-class, CRMP2-based peptidomimetic small molecule, which allosterically regulates Ca2.2 to achieve analgesia and pain relief without negative side effect profiles. In summary, CBD3063 could potentially be a more effective alternative to GBP for pain relief.


2023 Nov 15 - Sci Transl Med
Editor's Pick

Tension-activated nanofiber patches delivering an anti-inflammatory drug improve repair in a goat intervertebral disc herniation model.

Authors: Peredo AP, Gullbrand SE, Friday CS, Orozco BS, Dehghani B, Jenk AC, Bonnevie ED, Hilliard RL, Zlotnick HM, Dodge GR, Lee D, Engiles JB, Hast MW, Schaer TP, Smith HE, Mauck RL
Read Abstract

Conventional microdiscectomy treatment for intervertebral disc herniation alleviates pain but does not repair the annulus fibrosus, resulting in a high incidence of recurrent herniation and persistent dysfunction. The lack of repair and the acute inflammation that arise after injury can further compromise the disc and result in disc-wide degeneration in the long term. To address this clinical need, we developed tension-activated repair patches (TARPs) for annulus fibrosus repair and local delivery of the anti-inflammatory factor anakinra (a recombinant interleukin-1 receptor antagonist). TARPs transmit physiologic strain to mechanically activated microcapsules embedded within the patch, which release encapsulated bioactive molecules in direct response to spinal loading. Mechanically activated microcapsules carrying anakinra were loaded into TARPs, and the effects of TARP-mediated annular repair and anakinra delivery were evaluated in a goat model of annular injury in the cervical spine. TARPs integrated with native tissue and provided structural reinforcement at the injury site that prevented aberrant disc-wide remodeling resulting from detensioning of the annular fibrosus. The delivery of anakinra by TARP implantation increased matrix deposition and retention at the injury site and improved maintenance of disc extracellular matrix. Anakinra delivery additionally attenuated the inflammatory response associated with TARP implantation, decreasing osteolysis in adjacent vertebrae and preserving disc cellularity and matrix organization throughout the annulus fibrosus. These results demonstrate the therapeutic potential of TARPs for the treatment of intervertebral disc herniation.


2023 Nov 13 - Nat Rev Neurol
Editor's Pick

Idiopathic intracranial hypertension: a step change in understanding the disease mechanisms.

Authors: Yiangou A, Mollan SP, Sinclair AJ
Read Abstract

The understanding of idiopathic intracranial hypertension (IIH) has evolved over the past few years. Previously, IIH was considered a disease exclusively affecting the neuro-ophthalmic axis, characterized by raised intracranial pressure, headache and papilloedema, and resulting in the risk of severe and permanent visual loss and life-changing disabling headaches. Recent advances have begun to redefine IIH as a probable metabolic disease involving a range of systemic manifestations. More than 95% of individuals affected by the disease are women of reproductive age with obesity. The incidence is rapidly rising and parallels the escalating worldwide obesity rates. Contemporary insights identify associations with insulin resistance, type 2 diabetes and a twofold increased risk of cardiovascular disease in excess of that driven by obesity alone. Adipose distribution in people with IIH, like that in other metabolic diseases, is preferentially centripetal and is associated with changes in intracranial pressure. Evidence now demonstrates adipose tissue dysfunction in people with IIH, involving transcriptional and metabolic priming for lipogenesis and weight gain. Hormonal perturbations are also observed, including a unique phenotype of androgen excess that promotes cerebrospinal fluid secretion. Knowledge of these additional disease features is driving research into novel therapeutic targets and altering the approach to multidisciplinary care.


2023 Nov 14 - Pain
Editor's Pick

A phenotypic screening platform for chronic pain therapeutics using all-optical electrophysiology.

Authors: Liu PW, Zhang H, Werley CA, Pichler M, Ryan SJ, Lewarch CL, Jacques J, Grooms J, Ferrante J, Li G, Zhang D, Bremmer N, Barnett A, Chantre R, Elder AE, Cohen AE, Williams LA, Dempsey GT, McManus OB
Read Abstract

Chronic pain associated with osteoarthritis (OA) remains an intractable problem with few effective treatment options. New approaches are needed to model the disease biology and to drive discovery of therapeutics. We present an in vitro model of OA pain, where dorsal root ganglion (DRG) sensory neurons were sensitized by a defined mixture of disease-relevant inflammatory mediators, here called Sensitizing PAin Reagent Composition or SPARC. Osteoarthritis-SPARC components showed synergistic or additive effects when applied in combination and induced pain phenotypes in vivo. To measure the effect of OA-SPARC on neural firing in a scalable format, we used a custom system for high throughput all-optical electrophysiology. This system enabled light-based membrane voltage recordings from hundreds of neurons in parallel with single cell and single action potential resolution and a throughput of up to 500,000 neurons per day. A computational framework was developed to construct a multiparameter OA-SPARC neuronal phenotype and to quantitatively assess phenotype reversal by candidate pharmacology. We screened ∼3000 approved drugs and mechanistically focused compounds, yielding data from over 1.2 million individual neurons with detailed assessment of functional OA-SPARC phenotype rescue and orthogonal “off-target” effects. Analysis of confirmed hits revealed diverse potential analgesic mechanisms including ion channel modulators and other mechanisms including MEK inhibitors and tyrosine kinase modulators. Our results suggest that the Raf-MEK-ERK axis in DRG neurons may integrate the inputs from multiple upstream inflammatory mediators found in osteoarthritis patient joints, and MAPK pathway activation in DRG neurons may contribute to chronic pain in patients with osteoarthritis.


About PRF

IASP's Pain Research Forum serves as a nucleus for scientists performing basic, translational, and clinical pain
research, as well as clinicians and industry stakeholders interested in advances in pain research and
management.

About PRF

The interactive web community dedicated to accelerating the discovery of new treatments for pain.

LEARN MORE >

PRF Job Listings

Find information about opportunities in academia, industry, and more.

SEARCH JOBS >

PRF Editorial Board

We're guided by an international Editorial Board of leading pain researchers.

LEARN MORE >

PRF FAQs

How you can leverage and contribute to IASP's Pain Research Forum.

LEARN MORE >

How to Cite

If you use material from IASP's PRF in your own work, please cite us.

LEARN MORE >

Contact PRF

PRF welcomes any comments, questions, suggestions, or potential submissions you may have.

IASP Job Board

Find information on interviewing, networking, and even more opportunities.