I am a
Home I AM A Search Login
PRF-Logo-768x240

Fostering discussion and collaboration that speeds up the acquisition of new knowledge and its translation into novel pain treatments.

 

PRF News
Papers Of The Week
2024 Jun 11 - Proc Natl Acad Sci U S A
Editor's Pick

Activation of CGRP neurons in the parabrachial nucleus suppresses addictive behavior.

Authors: Pyeon GH, Kim JH, Choi JS, Jo YS
Read Abstract
Punishment such as electric shock or physical discipline employs a mixture of physical pain and emotional distress to induce behavior modification. However, a neural circuit that produces behavior modification by selectively focusing the emotional component, while bypassing the pain typically induced by peripheral nociceptor activation, is not well studied. Here, we show that genetically silencing the activity of neurons expressing calcitonin gene-related peptide (CGRP) in the parabrachial nucleus blocks the suppression of addictive-like behavior induced by footshock. Furthermore, activating CGRP neurons suppresses not only addictive behavior induced by self-stimulating dopamine neurons but also behavior resulting from self-administering cocaine, without eliciting nocifensive reactions. Moreover, among multiple downstream targets of CGRP neurons, terminal activation of CGRP in the central amygdala is effective, mimicking the results of cell body stimulation. Our results indicate that unlike conventional electric footshock, stimulation of CGRP neurons does not activate peripheral nociceptors but effectively curb addictive behavior.

2024 Jun 03 - Brain
Editor's Pick

Nociceptors are functionally male or female: from mouse to monkey to man.

Authors: Stratton H, Lee G, Dolatyari M, Ghetti A, Cotta T, Mitchell S, Yue X, Ibrahim M, Dumaire N, Salih L, Moutal A, François-Moutal L, Martin L, Navratilova E, Porreca F
Read Abstract

The prevalence of many pain conditions often differs between sexes. In addition to such quantitative distinctions, sexual dimorphism may also be qualitative reflecting differences in mechanisms that promote pain in men and women. A major factor that influences the likelihood of pain perception is the threshold for activation of nociceptors. Peripheral nociceptor sensitization has been demonstrated to be clinically relevant in many pain conditions. Whether peripheral nociceptor sensitization can occur in a sexually dimorphic fashion, however, has not been extensively studied. To address this fundamental knowledge gap, we used patch clamp electrophysiology to evaluate the excitability of dorsal root ganglion neurones from male or female rodents, non-human primates, and humans following exposure to putative sensitizing agents. Previous studies from our laboratory, and others, have shown that prolactin promotes female-selective pain responses in rodents. Consistent with these observations, dorsal root ganglion neurones from female, but not male, mice were selectively sensitized by exposure to prolactin. The sensitizing action of prolactin was also confirmed in dorsal root ganglion neurones from a female macaque monkey. Critically, neurones recovered from female, but not male, human donors were also selectively sensitized by prolactin. In the course of studies of sleep and pain, we unexpectedly observed that an orexin antagonist could normalize pain responses in male animals. We found that orexin B produced sensitization of male, but not female, mouse, macaque, and human dorsal root ganglion neurones. Consistent with functional responses, increased prolactin receptor and orexin receptor 2 expression was observed in female and male mouse dorsal root ganglia, respectively. Immunohistochemical interrogation of cultured human sensory neurones and whole dorsal root ganglia also suggested increased prolactin receptor expression in females and orexin receptor 2 expression in males. These data reveal a functional double dissociation of nociceptor sensitization by sex, which is conserved across species and is likely directly relevant to human pain conditions. To our knowledge, this is the first demonstration of functional sexual dimorphism in human sensory neurones. Patient sex is currently not a common consideration for the choice of pain therapy. Precision medicine, based on patient sex could improve therapeutic outcomes by selectively targeting mechanisms promoting pain in women or men. Additional implications of these findings are that the design of clinical trials for pain therapies should consider the proportions of male or female patients enrolled. Lastly, re-examination of selected past failed clinical trials with subgroup analysis by sex may be warranted.


2024 May 28 - Nat Immunol
Editor's Pick

Nociceptor-immune interactomes reveal insult-specific immune signatures of pain.

Authors: Jain A, Gyori BM, Hakim S, Jain A, Sun L, Petrova V, Bhuiyan SA, Zhen S, Wang Q, Kawaguchi R, Bunga S, Taub DG, Ruiz-Cantero MC, Tong-Li C, Andrews N, Kotoda M, Renthal W, Sorger PK, Woolf CJ
Read Abstract

Inflammatory pain results from the heightened sensitivity and reduced threshold of nociceptor sensory neurons due to exposure to inflammatory mediators. However, the cellular and transcriptional diversity of immune cell and sensory neuron types makes it challenging to decipher the immune mechanisms underlying pain. Here we used single-cell transcriptomics to determine the immune gene signatures associated with pain development in three skin inflammatory pain models in mice: zymosan injection, skin incision and ultraviolet burn. We found that macrophage and neutrophil recruitment closely mirrored the kinetics of pain development and identified cell-type-specific transcriptional programs associated with pain and its resolution. Using a comprehensive list of potential interactions mediated by receptors, ligands, ion channels and metabolites to generate injury-specific neuroimmune interactomes, we also uncovered that thrombospondin-1 upregulated by immune cells upon injury inhibited nociceptor sensitization. This study lays the groundwork for identifying the neuroimmune axes that modulate pain in diverse disease contexts.


2024 Jun 04 - Proc Natl Acad Sci U S A
Editor's Pick

Deep sequencing of Phox2a nuclei reveals five classes of anterolateral system neurons.

Authors: Bell AM, Utting C, Dickie AC, Kucharczyk MW, Quillet R, Gutierrez-Mecinas M, Razlan ANB, Cooper AH, Lan Y, Hachisuka J, Weir GA, Bannister K, Watanabe M, Kania A, Hoon MA, Macaulay IC, Denk F, Todd AJ
Read Abstract

The anterolateral system (ALS) is a major ascending pathway from the spinal cord that projects to multiple brain areas and underlies the perception of pain, itch, and skin temperature. Despite its importance, our understanding of this system has been hampered by the considerable functional and molecular diversity of its constituent cells. Here, we use fluorescence-activated cell sorting to isolate ALS neurons belonging to the Phox2a-lineage for single-nucleus RNA sequencing. We reveal five distinct clusters of ALS neurons (ALS1-5) and document their laminar distribution in the spinal cord using in situ hybridization. We identify three clusters of neurons located predominantly in laminae I-III of the dorsal horn (ALS1-3) and two clusters with cell bodies located in deeper laminae (ALS4 and ALS5). Our findings reveal the transcriptional logic that underlies ALS neuronal diversity in the adult mouse and uncover the molecular identity of two previously identified classes of projection neurons. We also show that these molecular signatures can be used to target groups of ALS neurons using retrograde viral tracing. Overall, our findings provide a valuable resource for studying somatosensory biology and targeting subclasses of ALS neurons.


2024 May 20 - Brain Behav Immun
Editor's Pick

IRF7 overexpression alleviates CFA-induced inflammatory pain by inhibiting nuclear factor-κB activation and pro-inflammatory cytokines expression in rats.

Authors: Jiang S, Li Z, Huang SJ, Zou W, Luo JG
Read Abstract

It is known that nerve signals arising from sites of inflammation lead to persistent changes in the spinal cord and contribute to the amplification and persistence of pain. Nevertheless, the underlying mechanisms have not yet been completely elucidated. We identified differentially expressed genes in the lumbar (L4-L6) segment of the spinal cord from complete Freund’s adjuvant (CFA) rats compared to control animals via high throughput sequencing. Based on differential gene expression analysis, we selected interferon regulatory factor 7 (IRF7) for follow-up experiments to explore its antinociceptive potential.


2024 May 15 - Cell
Editor's Pick

Innervation of nociceptor neurons in the spleen promotes germinal center responses and humoral immunity.

Authors: Wu M, Song G, Li J, Song Z, Zhao B, Liang L, Li W, Hu H, Tu H, Li S, Li P, Zhang B, Wang W, Zhang Y, Zhang W, Zheng W, Wang J, Wen Y, Wang K, Li A, Zhou T, Zhang Y, Li H
Read Abstract

Peripheral sensory neurons widely innervate various tissues to continuously monitor and respond to environmental stimuli. Whether peripheral sensory neurons innervate the spleen and modulate splenic immune response remains poorly defined. Here, we demonstrate that nociceptive sensory nerve fibers extensively innervate the spleen along blood vessels and reach B cell zones. The spleen-innervating nociceptors predominantly originate from left T8-T13 dorsal root ganglia (DRGs), promoting the splenic germinal center (GC) response and humoral immunity. Nociceptors can be activated by antigen-induced accumulation of splenic prostaglandin E (PGE) and then release calcitonin gene-related peptide (CGRP), which further promotes the splenic GC response at the early stage. Mechanistically, CGRP directly acts on B cells through its receptor CALCRL-RAMP1 via the cyclic AMP (cAMP) signaling pathway. Activating nociceptors by ingesting capsaicin enhances the splenic GC response and anti-influenza immunity. Collectively, our study establishes a specific DRG-spleen sensory neural connection that promotes humoral immunity, suggesting a promising approach for improving host defense by targeting the nociceptive nervous system.


2024 May 16 - Nat Rev Neurol
Editor's Pick

Deciphering nociplastic pain: clinical features, risk factors and potential mechanisms.

Authors: Kaplan CM, Kelleher E, Irani A, Schrepf A, Clauw DJ, Harte SE
Read Abstract

Nociplastic pain is a mechanistic term used to describe pain that arises or is sustained by altered nociception, despite the absence of tissue damage. Although nociplastic pain has distinct pathophysiology from nociceptive and neuropathic pain, these pain mechanisms often coincide within individuals, which contributes to the intractability of chronic pain. Key symptoms of nociplastic pain include pain in multiple body regions, fatigue, sleep disturbances, cognitive dysfunction, depression and anxiety. Individuals with nociplastic pain are often diffusely tender – indicative of hyperalgesia and/or allodynia – and are often more sensitive than others to non-painful sensory stimuli such as lights, odours and noises. This Review summarizes the risk factors, clinical presentation and treatment of nociplastic pain, and describes how alterations in brain function and structure, immune processing and peripheral factors might contribute to the nociplastic pain phenotype. This article concludes with a discussion of two proposed subtypes of nociplastic pain that reflect distinct neurobiological features and treatment responsivity.


2024 May 10 - Brain Behav Immun
Editor's Pick

Bone morphogenetic protein 4 derived from the cerebrospinal fluid in patients with postherpetic neuralgia induces allodynia via the crosstalk between microglia and astrocyte.

Authors: Chen K, Wei X, Zhang W, Wang R, Wang Y, Yang L
Read Abstract

During postherpetic neuralgia (PHN), the cerebral spinal fluid (CSF) possesses the capability to trigger glial activation and inflammation, yet the specific changes in its composition remain unclear. Recent findings from our research indicate elevations of central bone morphogenetic protein 4 (BMP4) during neuropathic pain (NP), serving as an independent modulator of glial cells. Herein, the aim of the present study is to test the CSF-BMP4 expressions and its role in the glial modulation in the process of PHN.


2024 May 03 - Pain
Editor's Pick

Methods for pragmatic randomized clinical trials of pain therapies: IMMPACT statement.

Authors: Hohenschurz-Schmidt D, Cherkin D, Rice ASC, Dworkin RH, Turk DC, McDermott MP, Bair MJ, DeBar LL, Edwards RR, Evans SR, Farrar JT, Kerns RD, Rowbotham MC, Wasan AD, Cowan P, Ferguson M, Freeman R, Gewandter JS, Gilron I, Grol-Prokopczyk H, Iyengar S, Kamp C, Karp BI, Kleykamp BA, Loeser JD, Mackey S, Malamut R, McNicol E, Patel KV, Schmader K, Simon L, Steiner DJ, Veasley C, Vollert J
Read Abstract

Pragmatic, randomized, controlled trials hold the potential to directly inform clinical decision making and health policy regarding the treatment of people experiencing pain. Pragmatic trials are designed to replicate or are embedded within routine clinical care and are increasingly valued to bridge the gap between trial research and clinical practice, especially in multidimensional conditions, such as pain and in nonpharmacological intervention research. To maximize the potential of pragmatic trials in pain research, the careful consideration of each methodological decision is required. Trials aligned with routine practice pose several challenges, such as determining and enrolling appropriate study participants, deciding on the appropriate level of flexibility in treatment delivery, integrating information on concomitant treatments and adherence, and choosing comparator conditions and outcome measures. Ensuring data quality in real-world clinical settings is another challenging goal. Furthermore, current trials in the field would benefit from analysis methods that allow for a differentiated understanding of effects across patient subgroups and improved reporting of methods and context, which is required to assess the generalizability of findings. At the same time, a range of novel methodological approaches provide opportunities for enhanced efficiency and relevance of pragmatic trials to stakeholders and clinical decision making. In this study, best-practice considerations for these and other concerns in pragmatic trials of pain treatments are offered and a number of promising solutions discussed. The basis of these recommendations was an Initiative on Methods, Measurement, and Pain Assessment in Clinical Trials (IMMPACT) meeting organized by the Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks.


2024 May 09 - J Clin Invest
Editor's Pick

Peripherally targeted analgesia via AAV-mediated sensory neuron-specific inhibition of multiple pronociceptive sodium channels.

Authors: Shin SM, Itson-Zoske B, Fan F, Xiao Y, Qiu C, Cummins TR, Hogan QH, Yu H
Read Abstract

This study reports that targeting intrinsically disordered regions of NaV1.7 protein facilitates discovery of sodium channel inhibitory peptide aptamers (NaViPA) for adeno-associated virus (AAV)-mediated, sensory neuron-specific analgesia. A multipronged inhibition of INa1.7, INa1.6, INa1.3, and INa1.1. but not INa1.5 and INa1.8 was found for a prototype, named NaViPA1, which was derived from the NaV1.7 intracellular loop 1 and is conserved among the TTXs NaV subtypes. NaViPA1 expression in primary sensory neurons (PSNs) of dorsal root ganglia (DRG) produced significant inhibition of TTXs INa but not TTXr INa. DRG injection of AAV6-encoded NaViPA1 significantly attenuated evoked and spontaneous pain behaviors in both male and female rats with neuropathic pain induced by tibial nerve injury (TNI). Whole-cell current clamp of the PSNs showed that NaViPA1 expression normalized PSN excitability in TNI rats, suggesting that NaViPA1 attenuated pain by reversal of injury-induced neuronal hypersensitivity. Immunohistochemistry revealed efficient NaViPA1 expression restricted in PSNs and their central and peripheral terminals, indicating PSN-restricted AAV biodistribution. Inhibition of sodium channels by NaViPA1 was replicated in the human iPSC-derived sensory neurons. These results summate that NaViPA1 is a promising analgesic lead that, combined with AAV-mediated PSN-specific block of multiple TTXs NaVs, has potential as peripheral nerve-restricted analgesic therapeutics.


About PRF

IASP's Pain Research Forum serves as a nucleus for scientists performing basic, translational, and clinical pain
research, as well as clinicians and industry stakeholders interested in advances in pain research and
management.

About PRF

The interactive web community dedicated to accelerating the discovery of new treatments for pain.

LEARN MORE >

PRF Job Listings

Find information about opportunities in academia, industry, and more.

SEARCH JOBS >

PRF Editorial Board

We're guided by an international Editorial Board of leading pain researchers.

LEARN MORE >

PRF FAQs

How you can leverage and contribute to IASP's Pain Research Forum.

LEARN MORE >

How to Cite

If you use material from IASP's PRF in your own work, please cite us.

LEARN MORE >

Contact PRF

PRF welcomes any comments, questions, suggestions, or potential submissions you may have.

IASP Job Board

Find information on interviewing, networking, and even more opportunities.