I am a
Home I AM A Search Login

Fostering discussion and collaboration that speeds up the acquisition of new knowledge and its translation into novel pain treatments.


PRF News
Papers Of The Week
2023 Sep 19 - Anesthesiology
Editor's Pick

Opposing effects on descending control of nociception by mu and kappa opioid receptors in the anterior cingulate cortex.

Authors: Navratilova E, Qu C, Ji G, Neugebauer V, Guerrero M, Rosen H, Roberts E, Porreca F
Read Abstract
The efficiency of descending pain modulation, commonly assessed with the conditioned pain modulation (CPM) procedure, is diminished in patients with chronic pain. We hypothesized that the efficiency of pain modulation is controlled by cortical opioid circuits.

2023 Sep 12 - Neuron
Editor's Pick

A cholinergic circuit that relieves pain despite opioid tolerance.

Authors: Sullere S, Kunczt A, McGehee DS
Read Abstract

Chronic pain is a tremendous burden for afflicted individuals and society. Although opioids effectively relieve pain, significant adverse outcomes limit their utility and efficacy. To investigate alternate pain control mechanisms, we explored cholinergic signaling in the ventrolateral periaqueductal gray (vlPAG), a critical nexus for descending pain modulation. Biosensor assays revealed that pain states decreased acetylcholine release in vlPAG. Activation of cholinergic projections from the pedunculopontine tegmentum to vlPAG relieved pain, even in opioid-tolerant conditions, through ⍺7 nicotinic acetylcholine receptors (nAChRs). Activating ⍺7 nAChRs with agonists or stimulating endogenous acetylcholine inhibited vlPAG neuronal activity through Ca and peroxisome proliferator-activated receptor α (PPAR⍺)-dependent signaling. In vivo 2-photon imaging revealed that chronic pain induces aberrant excitability of vlPAG neuronal ensembles and that ⍺7 nAChR-mediated inhibition of these cells relieves pain, even after opioid tolerance. Finally, pain relief through these cholinergic mechanisms was not associated with tolerance, reward, or withdrawal symptoms, highlighting its potential clinical relevance.

2023 Sep 13 - Nat Commun
Editor's Pick

Human OPRM1 and murine Oprm1 promoter driven viral constructs for genetic access to μ-opioidergic cell types.

Authors: Salimando GJ, Tremblay S, Kimmey BA, Li J, Rogers SA, Wojick JA, McCall NM, Wooldridge LM, Rodrigues A, Borner T, Gardiner KL, Jayakar SS, Singeç I, Woolf CJ, Hayes MR, De Jonghe BC, Bennett FC, Bennett ML, Blendy JA, Platt ML, Creasy KT, Renthal WR, Ramakrishnan C, Deisseroth K, Corder G
Read Abstract

With concurrent global epidemics of chronic pain and opioid use disorders, there is a critical need to identify, target and manipulate specific cell populations expressing the mu-opioid receptor (MOR). However, available tools and transgenic models for gaining long-term genetic access to MOR+ neural cell types and circuits involved in modulating pain, analgesia and addiction across species are limited. To address this, we developed a catalog of MOR promoter (MORp) based constructs packaged into adeno-associated viral vectors that drive transgene expression in MOR+ cells. MORp constructs designed from promoter regions upstream of the mouse Oprm1 gene (mMORp) were validated for transduction efficiency and selectivity in endogenous MOR+ neurons in the brain, spinal cord, and periphery of mice, with additional studies revealing robust expression in rats, shrews, and human induced pluripotent stem cell (iPSC)-derived nociceptors. The use of mMORp for in vivo fiber photometry, behavioral chemogenetics, and intersectional genetic strategies is also demonstrated. Lastly, a human designed MORp (hMORp) efficiently transduced macaque cortical OPRM1+ cells. Together, our MORp toolkit provides researchers cell type specific genetic access to target and functionally manipulate mu-opioidergic neurons across a range of vertebrate species and translational models for pain, addiction, and neuropsychiatric disorders.

2023 Sep 14 - Adv Mater
Editor's Pick

Halide Perovskites-based Diffusive Memristors for Artificial Mechano-Nociceptive System.

Authors: Im IH, Baek JH, Kim SJ, Kim J, Park SH, Kim JY, Yang JJ, Jang HW
Read Abstract

Numerous efforts for emulating organ systems comprised of multiple functional units have driven substantial advancements in bio-realistic electronics and systems. The resistance change behavior observed in diffusive memristors shares similarities with the potential change in biological neurons. Here, the diffusive threshold switching phenomenon in Ag-incorporated organometallic halide perovskites is utilized to demonstrate the functions of afferent neurons. Halide perovskites-based diffusive memristors show a low threshold voltage of ∼0.2 V with little variation, attributed to the facile migration of Ag ions uniformly dispersed within the halide matrix. Based on the reversible and reliable volatile threshold switching, the memristors successfully demonstrate fundamental nociceptive functions including threshold firing, relaxation, and sensitization. Furthermore, to replicate the biological mechano-nociceptive phenomenon at a system level, an artificial mechano-nociceptive system is built by integrating a diffusive memristor with a force-sensing resistor. The presented system is capable of detecting and discerning the detrimental impact caused by a heavy steel ball, effectively exhibiting the corresponding sensitization response. By further extending the single nociceptive system into a 5 × 5 array, successful stereoscopic nociception of uneven impulses was achieved in the artificial skin system through array-scale sensitization. Our results represent significant progress in the field of bio-inspired electronics and systems. This article is protected by copyright. All rights reserved.

2023 Sep - Lancet Rheumatol
Editor's Pick

Global, regional, and national burden of osteoarthritis, 1990-2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021.

Read Abstract

Osteoarthritis is the most common form of arthritis in adults, characterised by chronic pain and loss of mobility. Osteoarthritis most frequently occurs after age 40 years and prevalence increases steeply with age. WHO has designated 2021-30 the decade of healthy ageing, which highlights the need to address diseases such as osteoarthritis, which strongly affect functional ability and quality of life. Osteoarthritis can coexist with, and negatively effect, other chronic conditions. Here we estimate the burden of hand, hip, knee, and other sites of osteoarthritis across geographies, age, sex, and time, with forecasts of prevalence to 2050.

2023 Aug - Acta Pharm Sin B
Editor's Pick

Potentiation of PIEZO2 mechanically-activated currents in sensory neurons mediates vincristine-induced mechanical hypersensitivity.

Authors: Duan M, Jia Y, Huo L, Gao Y, Wang J, Zhang W, Jia Z
Read Abstract

Vincristine, a widely used chemotherapeutic agent for treating different cancer, often induces severe peripheral neuropathic pain. A common symptom of vincristine-induced peripheral neuropathic pain is mechanical allodynia and hyperalgesia. However, mechanisms underlying vincristine-induced mechanical allodynia and hyperalgesia are not well understood. In the present study, we show with behavioral assessment in rats that vincristine induces mechanical allodynia and hyperalgesia in a PIEZO2 channel-dependent manner since gene knockdown or pharmacological inhibition of PIEZO2 channels alleviates vincristine-induced mechanical hypersensitivity. Electrophysiological results show that vincristine potentiates PIEZO2 rapidly adapting (RA) mechanically-activated (MA) currents in rat dorsal root ganglion (DRG) neurons. We have found that vincristine-induced potentiation of PIEZO2 MA currents is due to the enhancement of static plasma membrane tension (SPMT) of these cells following vincristine treatment. Reducing SPMT of DRG neurons by cytochalasin D (CD), a disruptor of the actin filament, abolishes vincristine-induced potentiation of PIEZO2 MA currents, and suppresses vincristine-induced mechanical hypersensitivity in rats. Collectively, enhancing SPMT and subsequently potentiating PIEZO2 MA currents in primary afferent neurons may be an underlying mechanism responsible for vincristine-induced mechanical allodynia and hyperalgesia in rats. Targeting to inhibit PIEZO2 channels may be an effective analgesic method to attenuate vincristine-induced mechanical hypersensitivity.

2023 Sep 05 - Proc Natl Acad Sci U S A
Editor's Pick

A suicidal mechanism for the exquisite temperature sensitivity of TRPV1.

Authors: Mugo A, Chou R, Chin F, Liu B, Jiang QX, Qin F
Read Abstract

The vanilloid receptor TRPV1 is an exquisite nociceptive sensor of noxious heat, but its temperature-sensing mechanism is yet to define. Thermodynamics dictate that this channel must undergo an unusually energetic allosteric transition. Thus, it is of fundamental importance to measure directly the energetics of this transition in order to properly decipher its temperature-sensing mechanism. Previously, using submillisecond temperature jumps and patch-clamp recording, we estimated that the heat activation for TRPV1 opening incurs an enthalpy change on the order of 100 kcal/mol. Although this energy is on a scale unparalleled by other known biological receptors, the generally imperfect allosteric coupling in proteins implies that the actual amount of heat uptake driving the TRPV1 transition could be much larger. In this paper, we apply differential scanning calorimetry to directly monitor the heat flow in TRPV1 that accompanies its temperature-induced conformational transition. Our measurements show that heat invokes robust, complex thermal transitions in TRPV1 that include both channel opening and a partial protein unfolding transition and that these two processes are inherently coupled. Our findings support that irreversible protein unfolding, which is generally thought to be destructive to physiological function, is essential to TRPV1 thermal transduction and, possibly, to other strongly temperature-dependent processes in biology.

2023 Aug 26 - Angew Chem Int Ed Engl
Editor's Pick

Flexible, Miniaturized Sensing Probes Inspired by Biofuel Cells for Monitoring Synaptically Released Glutamate in the Mouse Brain.

Authors: Nithianandam P, Liu TL, Chen S, Jia Y, Dong Y, Saul M, Tedeschi A, Sun W, Li J
Read Abstract

Chemical biomarkers in the central nervous system can provide valuable quantitative measures to gain insight into the etiology and pathogenesis of neurological diseases. Glutamate, one of the most important excitatory neurotransmitters in the brain, has been found to be upregulated in various neurological disorders, such as traumatic brain injury, Alzheimer’s disease, stroke, epilepsy, chronic pain, and migraines. However, quantitatively monitoring glutamate release in situ has been challenging. This work presents a novel class of flexible, miniaturized probes inspired by biofuel cells for monitoring synaptically released glutamate in the nervous system. The resulting sensors, with dimensions as low as 50 by 50 µm2, can detect real-time changes in glutamate within the biologically relevant concentration range. Experiments exploiting the hippocampal circuit in mice models demonstrate the capability of the sensors in monitoring glutamate release via electrical stimulation using acute brain slices. These advances could aid in basic neuroscience studies and translational engineering, as the sensors provide a diagnostic tool for neurological disorders. Additionally, adapting the biofuel cell design to other neurotransmitters can potentially enable the detailed study of the effect of neurotransmitter dysregulation on neuronal cell signaling pathways and revolutionize neuroscience.

2023 Aug 25 - Pain
Editor's Pick

DNA N6-methyladenine methylase N6AMT1 controls neuropathic pain through epigenetically modifying Kcnj16 in dorsal horn neurons.

Authors: Zhou HM, Xu HJ, Sun RH, Zhang M, Li XT, Zhao YX, Yang K, Wei R, Liu Q, Li S, Xue Z, Hao LY, Yang L, Wang QH, Wang HJ, Gao F, Cao JL, Pan Z
Read Abstract

Nerve injury-induced aberrant changes in gene expression in spinal dorsal horn neurons are critical for the genesis of neuropathic pain. N6-methyladenine (m6A) modification of DNA represents an additional layer of gene regulation. Here, we report that peripheral nerve injury significantly decreased the level of m6A-specific DNA methyltransferase 1 (N6amt1) in dorsal horn neurons. This decrease was attributed, at least partly, to a reduction in transcription factor Nr2f6. Rescuing the decrease in N6amt1 reversed the loss of m6A at the promoter for inwardly rectifying potassium channel subfamily J member 16 (Kcnj16), mitigating the nerve injury-induced upregulation of Kcnj16 expression in the dorsal horn and alleviating neuropathic pain hypersensitivities. Conversely, mimicking the downregulation of N6amt1 in naive mice erased DNA m6A at the Kcnj16 promoter, elevated Kcnj16 expression, and led to neuropathic pain-like behaviors. Therefore, decreased N6amt1 caused by NR2F6 is required for neuropathic pain, likely through its regulation of m6A-controlled KCNJ16 in dorsal horn neurons, suggesting that DNA m6A modification may be a potential new target for analgesic and treatment strategies.

2023 Aug 23 - Nat Commun
Editor's Pick

A glutamatergic DRN-VTA pathway modulates neuropathic pain and comorbid anhedonia-like behavior in mice.

Authors: Wang XY, Jia WB, Xu X, Chen R, Wang LB, Su XJ, Xu PF, Liu XQ, Wen J, Song XY, Liu YY, Zhang Z, Liu XF, Zhang Y
Read Abstract

Chronic pain causes both physical suffering and comorbid mental symptoms such as anhedonia. However, the neural circuits and molecular mechanisms underlying these maladaptive behaviors remain elusive. Here using a mouse model, we report a pathway from vesicular glutamate transporter 3 neurons in the dorsal raphe nucleus to dopamine neurons in the ventral tegmental area (VGluT3→DA) wherein population-level activity in response to innocuous mechanical stimuli and sucrose consumption is inhibited by chronic neuropathic pain. Mechanistically, neuropathic pain dampens VGluT3 → DA glutamatergic transmission and DA neural excitability. VGluT3 → DA activation alleviates neuropathic pain and comorbid anhedonia-like behavior (CAB) by releasing glutamate, which subsequently promotes DA release in the nucleus accumbens medial shell (NAcMed) and produces analgesic and anti-anhedonia effects via D2 and D1 receptors, respectively. In addition, VGluT3 → DA inhibition produces pain-like reflexive hypersensitivity and anhedonia-like behavior in intact mice. These findings reveal a crucial role for VGluT3 → DA → D2/D1 pathway in establishing and modulating chronic pain and CAB.

About PRF

IASP's Pain Research Forum serves as a nucleus for scientists performing basic, translational, and clinical pain
research, as well as clinicians and industry stakeholders interested in advances in pain research and

About PRF

The interactive web community dedicated to accelerating the discovery of new treatments for pain.


PRF Job Listings

Find information about opportunities in academia, industry, and more.


PRF Editorial Board

We're guided by an international Editorial Board of leading pain researchers.



How you can leverage and contribute to IASP's Pain Research Forum.


How to Cite

If you use material from IASP's PRF in your own work, please cite us.


Contact PRF

PRF welcomes any comments, questions, suggestions, or potential submissions you may have.

IASP Job Board

Find information on interviewing, networking, and even more opportunities.