I am a
Home I AM A Search Login

Accepted

Share this

Assessment of the anti-hyperalgesic efficacy of J-2156, relative to clinically available analgesic/adjuvant agents in a rat model of mild to moderate chronic mechanical low back pain (LBP).

Chronic mechanical low back pain (cLBP) is a leading cause of disability and a major socio-economic burden internationally. The lifetime prevalence of non-specific LBP is approximately 84%, with the prevalence of cLBP at about 23%. Clinically available analgesic/adjuvant medications often provide inadequate pain relief in patients experiencing cLBP. Hence, the urgency for discovery of effective and better tolerated medications. Fourteen days after the induction of 5 shallow annular punctures (5X) in the lumbar intervertebral discs at L4/L5 and L5/L6 in male Sprague-Dawley rats, mechanical hyperalgesia was fully developed in the lumbar axial deep tissues at L4/L5 (primary) and L1 (secondary). Importantly, mechanical allodynia in the hindpaws was absent. From day 28, we assessed the face validity of our mild to moderate LBP-5X rat model using four clinically available analgesic/adjuvant drugs, namely gabapentin, morphine, meloxicam and amitriptyline relative to vehicle. Additionally, the anti-hyperalgesic effects of J-2156, a highly selective small molecule somatostatin type 4 receptor agonist was assessed. Single i.p. bolus doses of gabapentin and meloxicam at the highest doses tested (100 and 30 mg/kg respectively) alleviated secondary hyperalgesia (L1) but not primary hyperalgesia (L4/5). Morphine at 1 mg/kg alleviated both primary and secondary hyperalgesia in these tissues, whereas amitriptyline at the doses tested, lacked efficacy. These findings attest to the face validity of our model. J-2156 at 10 and 30 mg/kg alleviated secondary hyperalgesia in the lumbar axial deep tissues at L1 with a non-significant trend for relief of primary hyperalgesia in the corresponding tissues at L4/L5 in these animals.

Learn More >

Genetics and Opioids: Towards More Appropriate Prescription in Cancer Pain.

Opioids are extensively used in patients with cancer pain; despite their efficacy, several patients can experience ineffective analgesia and/or side effects. Pharmacogenetics is a new approach to drug prescription based on the "personalized-medicine" concept, i.e., the ability of tailoring treatments to each individual's genetic/genomic profile. Pharmacogenetics aims to identify specific genetic variants that influence pharmacokinetics and pharmacodynamics of drugs, better determining their effectiveness/safety profile. Opioid response is a complex scenario, but some gene variants have shown a correlation with pain sensitivity, as well as with opioid metabolism and clinical efficacy/adverse events. Although questions remain unanswered, some of these gene variants may already be used to identify specific patients' phenotypes that are more prone to experience better clinical response (i.e., better analgesia and/or less adverse events). Once adopted, this approach to opioid prescription may improve a patient's outcome. This review summarizes the available data on genetic variants and opioid response: we will focus on basic pharmacogenetic and its impact in the clinical scenario discussing how they may lead to more appropriate opioid prescription in cancer patients.

Learn More >

Transient receptor potential ankyrin 1 (TRPA1) antagonists: a patent review (2015-2019).

TRPA1 is a non-selective cation channel predominantly expressed in sensory neurons, and functions as an irritant sensor for a plethora of noxious external stimuli and endogenous ligands associated with cell damage. Due to its involvement in pain, itch, and respiratory syndromes, TRPA1 has been pursued as a promising drug target.

Learn More >

Patients with chronic migraine without history of medication overuse are characterized by a peculiar white matter fiber bundle profile.

We investigated intracerebral fiber bundles using a tract-based spatial statistics (TBSS) analysis of diffusion tensor imaging (DTI) data to verify microstructural integrity in patients with episodic (MO) and chronic migraine (CM).

Learn More >

Astrocytic NDRG2 is critical in the maintenance of neuropathic pain.

Activation of astrocytes and abnormal synaptic glutamate metabolism are closely associated with the induction and maintenance of neuropathic pain (NP), but the exact mechanism underlying this association remains unclear. N-myc downstream-regulated gene 2 (NDRG2), a novel tumor-suppressor protein and stress-response gene, is involved in the pathogenesis of several neurodegenerative diseases. However, its role in nociceptive transduction has rarely been investigated. Here, we found that NDRG2, which was mainly expressed in the astrocytes in the central nervous system (CNS), was increased in the spinal cord of a spinal nerve ligation (SNL) rat model for NP. Suppression of NDRG2 by intrathecal injection of an NDRG2-RNAi-adenovirus significantly alleviated SNL-induced mechanical and thermal hypersensitivity, as well as elevated astrocytic glutamate transporter 1 (GLT-1) expression and downregulated pro-inflammatory cytokine levels, in the spinal dorsal horn of rats on Day 10 after SNL. Furthermore, in lipopolysaccharide (LPS)-stimulated primary astrocytic cultures derived from neonatal rats, inhibition of NDRG2 significantly reversed both the LPS-induced activation of astrocytes and decreased expression of GLT-1. By contrast, overexpression of NDRG2 by an adenoviral vector carrying NDRG2 resulted in astrocytic activation, aberrant glutamatergic neurotransmission, and spontaneous nociceptive responses in rats. Intrathecal injection of AG490, which is an inhibitor of the Janus tyrosine kinase and signal transducer and activator of the transcription 3 (JAK/STAT3) signaling pathway, significantly attenuated both mechanical and thermal hyperalgesia, as well as inhibited reactive astrocytes and restored normal expression levels of astrocytic GLT-1, in the spinal dorsal horn of NDRG2-overexpression rats. In conclusion, spinal astrocytic NDRG2 is critical in the maintenance of NP. Moreover, NDRG2 modulates astrocytic activation and inflammatory responses via regulating GLT-1 expression through the JAK/STAT3 signaling pathway. Our findings suggested that NDRG2 could be a novel therapeutic target for the treatment of NP.

Learn More >

Chronic mechanical hypersensitivity in experimental autoimmune encephalomyelitis is regulated by disease severity and neuroinflammation.

Chronic pain severely affects quality of life in more than half of people living with multiple sclerosis (MS). A commonly-used model of MS, experimental autoimmune encephalomyelitis (EAE), typically presents with hindlimb paralysis, neuroinflammation and neurodegeneration. However, this paralysis may hinder the use of pain behavior tests, with no apparent hypersensitivity observed post-peak disease. We sought to adapt the classic actively-induced EAE model to optimize its pain phenotype. EAE was induced with MOG/CFA and 100-600ng pertussis toxin (PTX), and mice were assessed for mechanical, cold and thermal sensitivity over a 28-day period. Spinal cord tissue was collected at 14 and 28 days post-injection to assess demyelination and neuroinflammation. Only mice treated with 100ng PTX exhibited mechanical hypersensitivity. Hallmarks of disease pathology, including demyelination, immune cell recruitment, cytokine expression, glial activation, and neuronal damage were higher in EAE mice induced with moderate (200ng) doses of pertussis toxin, compared to those treated with low (100ng) levels. Immunostaining demonstrated activated astrocytes and myeloid/microglial cells in both EAE groups. These results indicate that a lower severity of EAE disease may allow for the study of pain behaviors while still presenting with disease pathology. By using this modified model, researchers may better study the mechanisms underlying pain.

Learn More >

The Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of ASP3652 in First-in-Human and Ascending Multiple Oral Dose Studies in Healthy Subjects.

Inhibitors of fatty acid amide hydrolase (FAAH) increase the levels of endocannabinoids and have shown analgesic and anti-inflammatory activity in animal models. ASP3652 is a peripherally acting FAAH inhibitor in development for the treatment of chronic bladder and pelvic pain disorders. Here we describe the safety, pharmacokinetics, and pharmacodynamics of single and multiple oral doses of ASP3652 administered in healthy non-elderly and elderly male and female volunteers.

Learn More >

Constant-severe pain in chronic pancreatitis is associated with genetic loci for major depression in the NAPS2 cohort.

Pain is the most debilitating symptom of recurrent acute pancreatitis (RAP) and chronic pancreatitis (CP) and often requires chronic opioids or total pancreatectomy with islet autotransplantation to manage. Pain is a complex experience that can be exacerbated by depression and vice versa. Our aim was to test the hypothesis that depression-associated genes are associated with a constant-severe pain experience in RAP/CP patients.

Learn More >

Cognitive and sensorimotor function in participants being treated for trigeminal neuralgia pain.

Trigeminal neuralgia (TN) is an orofacial condition defined by reoccurring, spontaneous, short-lived but excruciating stabbing pain. Pharmacological interventions constitute the first-line treatment for TN, with antiepileptic drugs commonly prescribed. People treated for TN pain with antiepileptic drugs describe cognitive and motor difficulties affecting activities of daily living, and report poorer quality of life. We undertook the first comprehensive objective evaluation of sensorimotor and cognitive performance in participants being treated for TN pain with antiepileptic drugs relative to age-matched controls.

Learn More >

Online psychological interventions to reduce symptoms of depression, anxiety, and general distress in those with chronic health conditions: a systematic review and meta-analysis of randomized controlled trials.

Over the past 15 years, there has been substantial growth in web-based psychological interventions. We summarize evidence regarding the efficacy of web-based self-directed psychological interventions on depressive, anxiety and distress symptoms in people living with a chronic health condition.

Learn More >

Search