I am a
Home I AM A Search Login

Accepted

Share this

Cerebral Gray Matter Volume Changes in Patients with Neuropathic Pain from Total Brachial Plexus Injury.

Total brachial plexus injury not only significantly affects the motor and sensory function of the affected upper limbs but also causes further physical and mental damage to patients with long-term intractable pain. Previous studies mainly focused on the surgical treatment, while only a few paid attention to the intractable neuropathic pain caused by this injury. Changes in the volume of gray matter in the brain are thought to be associated with chronic neuropathic pain.

Learn More >

Exploring pharmacological inhibition of G as an analgesic strategy.

Misuse of opioids has greatly affected our society. One potential solution is to develop analgesics that act at targets other than opioid receptors. These can be either used as stand-alone therapeutics or to improve the safety profile of opioid drugs. Previous research showed that activation of G proteins by G protein-coupled receptors has pro-nociceptive properties suggesting that blockade of G signaling could be beneficial for pain control. The aim of this study was to test this hypothesis pharmacologically by using potent and selective G inhibitor YM-254890.

Learn More >

The Bidirectional Relationship Between Migraine and Meniere Disease.

Learn More >

Cholestatic Itch: Our Current Understanding of Pathophysiology and Treatments.

Hepatic pruritus is common in liver conditions, including cholestasis and nonalcoholic fatty liver disease. The pruritus can be severe enough to diminish sleep and decrease quality of life. The pathophysiology likely involves many molecules and receptors, including bile acids, bilirubin, lysophosphatidic acid (LPA), endogenous opioids, and serotonin. Recent advances suggest a significant role of Mas-related G protein-coupled receptor X4 (MRGPRX4) and autotaxin/LPA as key players in cholestatic pruritus. Further research is needed to develop increasingly targeted therapies with greater efficacy, especially given that many patients report itch refractory to various treatments. Cholestyramine was the only US FDA-approved drug for cholestatic pruritus until recent approval of ileal bile acid transporter (IBAT) inhibitors for use in the pediatric cholestatic conditions, progressive familial intrahepatic cholestasis and Alagille syndrome. Both medications decrease the bile acid pool. IBAT inhibitors are under investigation for broader use, and targeting LPA receptors and MRGPR4 are additional attractive options.

Learn More >

Correction to: Not be neglected: Galen’s description of critical headache.

Learn More >

Autoimmune Autonomic Dysfunction Syndromes: Potential Involvement and Pathophysiology Related to Complex Regional Pain Syndrome, Fibromyalgia, Chronic Fatigue Syndrome, Silicone Breast Implant-Related Symptoms and Post-COVID Syndrome.

The pathophysiological mechanisms involved in chronic disorders such as complex regional pain syndrome, fibromyalgia, chronic fatigue syndrome, silicone breast implant-related symptoms, and post-COVID syndrome have not been clearly defined. The course of the pain in some of the syndromes, the absence of evident tissue damage, and the predominance of alterations in the autonomic nervous system are shared similarities between them. The production of autoantibodies following a trigger in the syndromes was previously described, for instance, trauma in complex regional pain syndrome, infectious agents in fibromyalgia, chronic fatigue syndrome, and post-COVID syndrome, and the immune stimulation by silicone in women with breast implants. In fact, the autoantibodies produced were shown to be directed against the autonomic nervous system receptors, leading to the amplification of the perception of pain alongside various clinical symptoms seen during the clinical course of the syndromes. Therefore, we viewed autoantibodies targeting the autonomic nervous system resulting in autonomic dysfunction as likely the most comprehensive explanation of the pathophysiology of the disorders mentioned. Based on this, we aimed to introduce a new concept uniting complex regional pain syndrome, fibromyalgia, chronic fatigue syndrome, silicone breast implant-related symptoms, and post-COVID syndrome, namely "autoimmune autonomic dysfunction syndromes". Due to its etiological, pathophysiological, and clinical implications, the suggested term would be more precise in classifying the syndromes under one title. The new title would doubtlessly facilitate both laboratory and clinical studies aimed to improve diagnosis and make treatment options more directed and precise.

Learn More >

Experimental animal models of migraine.

Animal models of migraine have been widely used during the last decades to provide clues for understanding mechanisms underlying pathophysiology of migraine attacks and for developing specific therapeutic agents. They can be grouped into two main types: vascular and neurovascular. Trigemino-vascular system (TVS) is the most relevant efferent component and the mediators of its activity have been thoroughly studied along with some of the receptors involved to characterize anatomical and functional aspects of the system and to test efficacy and mechanisms of therapeutic agents. Neurovascular models are numerous. Plasma protein extravasation (PPE) model consists of measuring the amount of proteins leaking from vessels when TVS is either electrically or chemically stimulated and evaluating its blockade by systemically administered therapeutic agents of which specific receptors have also been identified. Activation of trigeminal nucleus caudalis (TNC) through meningeal stimulation of the superior sagittal sinus served to better understand the mechanisms of central nociceptive pathway. The cortical spreading depression (CSD) model has been used to activate the TVS through application of potassium chloride and evaluate Fos expression in the trigeminal nucleus caudalis (TNC). Finally, neurochemical, cerebrovascular, and nociceptive response to systemic or central administration of nitric oxide (NO) donors served to study central nociceptive pathway and autonomic response interaction. Transgenic mouse expressing human migraine mutations has been genetically engineered to provide an understanding of familial hemiplegic migraine (FHM). Animal models of migraine also served to better understand the role of hormones, genes, and environmental factors on migraine pathophysiology.

Learn More >

The Tibial Fracture-Pin Model: A Clinically Relevant Mouse Model of Orthopedic Injury.

The tibial fracture-pin model is a mouse model of orthopedic trauma and surgery that recapitulates the complex muscle, bone, nerve, and connective tissue damage that manifests with this type of injury in humans. This model was developed because previous models of orthopedic trauma did not include simultaneous injury to multiple tissue types (bone, muscle, nerves) and were not truly representative of human complex orthopedic trauma. The authors therefore modified previous models of orthopedic trauma and developed the tibial fracture-pin model. This modified fracture model consists of a unilateral open tibial fracture with intramedullary nail (IMN) internal fixation and simultaneous tibialis anterior (TA) muscle injury, resulting in mechanical allodynia that lasts up to 5 weeks post injury. This series of protocols outlines the detailed steps to perform the clinically relevant orthopedic trauma tibial fracture-pin model, followed by a modified hot plate assay to examine nociceptive changes after orthopedic injury. Taken together, these detailed, reproducible protocols will allow pain researchers to expand their toolkit for studying orthopedic trauma-induced pain.

Learn More >

Role of Src Kinase in Regulating Protein Kinase C Mediated Phosphorylation of TRPV1.

Transient receptor potential vanilloid-1 (TRPV1), activated by heat, acidic pH, endogenous vanilloids, and capsaicin, is essential for thermal hyperalgesia. Under inflammatory conditions, phosphorylation of TRPV1 by protein kinase C (PKC) can sensitize the channel and decrease the activation threshold. Src kinase also phosphorylates TRPV1, promoting channel trafficking to the plasma membrane. These post-translational modifications are important for several chronic pain conditions. This study presents a previously undescribed relationship between Src and PKC phosphorylation of TRPV1, influencing the thermal hypersensitivity associated with TRPV1 activation.

Learn More >

Neuropathic pain and itch: mechanisms in allergic conjunctivitis.

Allergic conjunctivitis is highly prevalent and affects up to one third of the general population. The current understanding of the pathophysiology and therapeutic strategies center around the type 2 inflammatory pathway. However, there is an increasing body of evidence that suggests neurogenic mechanisms also play a role in allergic inflammation, with a substantial proportion of allergic conjunctivitis patients experiencing both ocular itch and pain.

Learn More >

Search