I am a
Home I AM A Search Login

Pharmacology/Drug Development

Share this

Treatment With the Delta Opioid Agonist UFP-512 Alleviates Chronic Inflammatory and Neuropathic Pain: Mechanisms Implicated.

We investigated whether administration of the δ-opioid receptor (DOR) agonist H-Dmt-Tic-NH-CH(CH2-COOH)-Bid (UFP-512), which also activates nuclear factor erythroid 2-related factor 2 (Nrf2), alleviated chronic inflammatory and/or neuropathic pain and inhibited the depressive-like behaviors associated with persistent neuropathic pain. The possible mechanisms implicated were also assessed. We evaluated the following effects in male C57BL/6J mice with inflammatory pain induced by or neuropathic pain caused by the chronic constriction of sciatic nerve: (1) the antinociceptive effects of UFP-512; (2) the effects of UFP-512 on the expression of Nrf2, heme oxygenase 1 (HO-1), NAD(P)H quinone oxidoreductase 1, phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), inducible nitric oxide synthase, DOR, and mitogen-activated protein kinases (MAPK) in the spinal cord of animals with inflammatory or neuropathic pain; (3) the antinociceptive effects of the coadministration of UFP-512 with the Nrf2 activator sulforaphane (SFN); and (4) the antidepressant effects of UFP-512 in animals with depressive-like behaviors associated with neuropathic pain. Our results demonstrated that the intraperitoneal administration of UFP-512 inhibited chronic inflammatory and neuropathic pain and reduced the depressive-like behaviors associated with persistent neuropathic pain. The antiallodynic effects of UFP-512 were significantly augmented when it was coadministered with SFN in both types of chronic pain. The administration of UFP-512 increased/reestablished the spinal cord protein levels of Nrf2 and HO-1 in mice with inflammatory or neuropathic pain. However, while during inflammatory pain UFP-512 inhibited spinal c-Jun N-terminal kinase (JNK) and extracellular signal regulated kinase 1/2 (ERK1/2) phosphorylation induced by peripheral inflammation. This DOR agonist blocked the spinal activated PI3K/Akt signaling pathway under chronic neuropathic pain conditions, but it did not alter the enhanced protein levels of p-JNK or p-ERK1/2 induced by sciatic nerve injury. These results revealed the antinociceptive and antidepressant effects of UFP-512 in animals with chronic pain and the different mechanism of action of this DOR agonist in the presence of inflammatory or neuropathic pain. Our data also suggest the administration of UFP-512 as an alternative for the treatment of chronic pain and the depressive-like behaviors associated with neuropathic pain.

Learn More >

CGRP and Painful Pathologies Other than Headache.

CGRP has long been suspected as a mediator of arthritis pain, although evidence that CGRP directly mediates human musculoskeletal pain remains circumstantial. This chapter describes in depth the evidence surrounding CGRP's association with pain in musculoskeletal disorders and also summarises evidence for CGRP being a direct cause of pain in other conditions. CGRP-immunoreactive nerves are present in musculoskeletal tissues, and CGRP expression is altered in musculoskeletal pain. CGRP modulates musculoskeletal pain through actions both in the periphery and central nervous system. Human observational studies, research on animal arthritis models and the few reported randomised controlled trials in humans of treatments that target CGRP provide the context of CGRP as a possible pain biomarker or mediator in conditions other than migraine.

Learn More >

Evaluation of Clinical Factors Associated with Adverse Drug Events in Patients Receiving Sub-Anesthetic Ketamine Infusions.

Sub-anesthetic ketamine is frequently used as an analgesic to reduce perioperative opioid consumption and has also been shown to have antidepressant effects. Side effects of ketamine include dizziness, diplopia, nystagmus, and psychomimetic effects. It is unclear what clinical factors may be associated with ketamine-related adverse drug events (ADEs).

Learn More >

Emerging Trends in Pain Modulation by Metabotropic Glutamate Receptors.

Pain is an essential protective mechanism meant to prevent tissue damages in organisms. On the other hand, chronic or persistent pain caused, for example, by inflammation or nerve injury is long lasting and responsible for long-term disability in patients. Therefore, chronic pain and its management represents a major public health problem. Hence, it is critical to better understand chronic pain molecular mechanisms to develop innovative and efficient drugs. Over the past decades, accumulating evidence has demonstrated a pivotal role of glutamate in pain sensation and transmission, supporting glutamate receptors as promising potential targets for pain relieving drug development. Glutamate is the most abundant excitatory neurotransmitter in the brain. Once released into the synapse, glutamate acts through ionotropic glutamate receptors (iGluRs), which are ligand-gated ion channels triggering fast excitatory neurotransmission, and metabotropic glutamate receptors (mGluRs), which are G protein-coupled receptors modulating synaptic transmission. Eight mGluRs subtypes have been identified and are divided into three classes based on their sequence similarities and their pharmacological and biochemical properties. Of note, all mGluR subtypes (except mGlu6 receptor) are expressed within the nociceptive pathways where they modulate pain transmission. This review will address the role of mGluRs in acute and persistent pain processing and emerging pharmacotherapies for pain management.

Learn More >

Therapeutic Effect of the Substrate-Selective COX-2 Inhibitor IMMA in the Animal Model of Chronic Constriction Injury.

Enhancement of endocannabinoid signaling has emerged as an attractive strategy for the treatment of pain. In addition to the well-characterized hydrolytic pathways, cyclooxygenase-2 (COX-2) mediated oxygenation is thought to be an alternative route for endocannabinoid metabolism and therefore provides a new avenue for drug intervention. In this study, we examined the therapeutic effect of indomethacin morpholinamide (IMMA), a novel substrate-selective COX-2 inhibitor, in the chronic constriction injury (CCI) mouse model. Treatment with IMMA significantly alleviated hyperalgesia and mechanical allodynia demonstrated by increased thermal withdrawal latency in Hargreaves test and tactile thresholds in Von Frey test. Accumulation of astrocytes and microglia in spinal cord dorsal horn and infiltration of macrophages into the dorsal root ganglion and sciatic nerve were reduced by drug treatment. Co-administration of the CB2 receptor antagonist, but not the CB1 receptor antagonist partially reversed the inhibitory effect of IMMA on pain sensitivity and inflammatory infiltrates. IMMA downregulated the mRNA expression of TNF-α and IL-1β and the production of IL-6 and MCP-1 proteins in the ipsilateral sciatic nerve. The enhanced NF-κB DNA binding activity in the CCI mouse dorsal spinal cord was also significantly reduced, suggesting that inactivation of NF-κB contributes to the anti-inflammatory property of IMMA. However, different from the previous reports showing that IMMA can increase endocannabinoids without interfering with arachidonic acid metabolism, treatment with IMMA failed to elevate the endogenous levels of AEA and 2-AG, but significantly reduced the production of prostaglandin E (PGE). Furthermore, the mRNA expression of enzymes involved in PGE production, COX-2 and prostaglandin E synthase 2 in the ipsilateral sciatic nerve was also suppressed by IMMA treatment. Taken together, these results suggested that IMMA might exert anti-nociceptive effects through multiple mechanisms which include, but are not limited to, CB2 receptor activation and reduced PGE production.

Learn More >

Mu-Opioid Receptor Agonist Induces Kir3 Currents in Mouse Peripheral Sensory Neurons – Effects of Nerve Injury.

Neuropathic pain often arises from damage to peripheral nerves and is difficult to treat. Activation of opioid receptors in peripheral sensory neurons is devoid of respiratory depression, sedation, nausea, and addiction mediated in the brain, and ameliorates neuropathic pain in animal models. Mechanisms of peripheral opioid analgesia have therefore gained interest, but the role of G protein-coupled inwardly rectifying potassium (Kir3) channels, important regulators of neuronal excitability, remains unclear. Whereas functional Kir3 channels have been detected in dorsal root ganglion (DRG) neurons in rats, some studies question their contribution to opioid analgesia in inflammatory pain models in mice. However, neuropathic pain can be diminished by activation of peripheral opioid receptors in mouse models. Therefore, here we investigated effects of the selective μ-opioid receptor (MOR) agonist [D-Ala, -Me-Phe, Gly-ol]-enkephalin (DAMGO) on potassium conductance in DRG neurons upon a chronic constriction injury (CCI) of the sciatic nerve in mice. For verification, we also tested human embryonic kidney (HEK) 293 cells transfected with MOR and Kir3.2. Using patch clamp, we recorded currents at -80 mV and applied voltage ramps in high extracellular potassium concentrations, which are a highly sensitive measures of Kir3 channel activity. We found a significantly higher rate of HEK cells responding with potassium channel blocker barium-sensitive inward current (233 ± 51 pA) to DAMGO application in transfected than in untransfected group, which confirms successful recordings of inward currents through Kir3.2 channels. Interestingly, DAMGO induced similar inward currents (178 ± 36-207 ± 56 pA) in 15-20% of recorded DRG neurons from naïve mice and in 4-27% of DRG neurons from mice exposed to CCI, measured in voltage clamp or voltage ramp modes. DAMGO-induced currents in naïve and CCI groups were reversed by barium and a more selective Kir3 channel blocker tertiapin-Q. These data indicate the coupling of Kir3 channels with MOR in mouse peripheral sensory neuron cell bodies, which was unchanged after CCI. A comparative analysis of opioid-induced potassium conductance at the axonal injury site and peripheral terminals of DRG neurons could clarify the role of Kir3 channel-MOR interactions in peripheral nerve injury and opioid analgesia.

Learn More >

Cannabinoid Ligands Targeting TRP Channels.

Transient receptor potential (TRP) channels are a group of membrane proteins involved in the transduction of a plethora of chemical and physical stimuli. These channels modulate ion entry, mediating a variety of neural signaling processes implicated in the sensation of temperature, pressure, and pH, as well as smell, taste, vision, and pain perception. Many diseases involve TRP channel dysfunction, including neuropathic pain, inflammation, and respiratory disorders. In the pursuit of new treatments for these disorders, it was discovered that cannabinoids can modulate a certain subset of TRP channels. The TRP vanilloid (TRPV), TRP ankyrin (TRPA), and TRP melastatin (TRPM) subfamilies were all found to contain channels that can be modulated by several endogenous, phytogenic, and synthetic cannabinoids. To date, six TRP channels from the three subfamilies mentioned above have been reported to mediate cannabinoid activity: TRPV1, TRPV2, TRPV3, TRPV4, TRPA1, and TRPM8. The increasing data regarding cannabinoid interactions with these receptors has prompted some researchers to consider these TRP channels to be "ionotropic cannabinoid receptors." Although CB1 and CB2 are considered to be the canonical cannabinoid receptors, there is significant overlap between cannabinoids and ligands of TRP receptors. The first endogenous agonist of TRPV1 to be discovered was the endocannabinoid, anandamide (AEA). Similarly, arachidonyl dopamine (NADA) and AEA were the first endogenous TRPM8 antagonists discovered. Additionally, Δ-tetrahydrocannabinol (Δ-THC), the most abundant psychotropic compound in cannabis, acts most potently at TRPV2, moderately modulates TRPV3, TRPV4, TRPA1, and TRPM8, though Δ-THC is not reported to modulate TRPV1. Moreover, TRP receptors may modulate effects of synthetic cannabinoids used in research. One common research tool is WIN55,212-2, a CB1 agonist that also exerts analgesic effects by desensitizing TRPA1 and TRPV1. In this review article, we aim to provide an overview and classification of the cannabinoid ligands that have been reported to modulate TRP channels and their therapeutic potential.

Learn More >

Dissociative and analgesic properties of ketamine are independent and unaltered by sevoflurane general anesthesia.

Ketamine, an anesthetic adjunct, is routinely administered as part of a balanced general anesthetic technique. We recently showed that the acute analgesic and dissociation properties of ketamine are separable to suggest that distinct neural circuits underlie these states.

Learn More >

Successful use of buprenorphine-naloxone medication-assisted program to treat concurrent pain and opioid addiction after cancer therapy.

Cancer pain is often treated with opioids, a therapeutic regimen that can become a challenge in patients with an opioid use disorder (OUD). While use of the buprenorphine-naloxone combination is an effective medication-assisted treatment (MAT) for OUD, its use in pain patients with OUD has been controversial due to concerns that co-administration of buprenorphine can reduce or block analge-sia and precipitate opioid withdrawal in those patients requiring full opioid agonists. Data on its use in cancer pain patients are lack-ing. In this case series, the authors explore the frequency of buprenorphine-naloxone use and its outcomes in patients in a Compre-hensive Care Center (CCC) Pain Registry. OUD was deduced from an International Classification of Diseases (ICD-10) diagnostic code for opioid-related disorders recorded in the electronic medical records. Of 2,320 chronic cancer pain patients, 125 patients had ICD-10 code for opioid-related disorders, and 43 had a diagnosis of opioid abuse of whom 11 received buprenorphine-naloxone combina-tions. Eight patients on 18 (6-24) mg per day of buprenorphine-naloxone remained in therapy for 4 (2-7) years without opioid abuse relapse. This assessment was based on clinician's notes, the Prescription Monitoring Program, random urine drug screening, and the absence of Urgent Care Center visits for opioid withdrawal or overdose. When short-term opioids were administered for acute pain, these patients were able to taper down and stop them quickly without an opioid abuse relapse. Buprenorphine-naloxone was effec-tive as the sole analgesic in selected patients. Given its success at the CCC, buprenorphine-naloxone should be made available and strongly considered as a treatment for patients suffering from OUD during and following cancer treatment and when cancer pain re-duces or resolves.

Learn More >

Orofacial Antinociceptive Effect of Nifedipine in Rodents Is Mediated by TRPM3, TRPA1, and NMDA Processes.

To test for the possible antinociceptive effect of nifedipine in rodent models of acute and chronic neuropathic orofacial pain and the possible involvement of TRP- and NMDA-related processes in this effect.

Learn More >

Search