I am a
Home I AM A Search Login

Pharmacology/Drug Development

Share this

Intra-CA1 injection of orexin receptors antagonism attenuates the stress-induced analgesia in a rat acute pain model.

Orexins or hypocretins are excitatory neuropeptides predominantly produced by neuronal clusters in the lateral hypothalamus. The orexinergic system's involvement in pain modulation makes it a candidate for pain control alternative to the opioid system. Moreover, orexin-1 and orexin -2 receptors (OX1r and OX2r, respectively) play a role in responsiveness to stressful stimuli. Some evidence indicates that the Cornu Ammonis 1 (CA1) region of the hippocampus potentially participates in the modulation of both pain and stress. In quest of better understanding the interaction between orexin receptors and stress-induced analgesia (SIA), The present study examined the involvement of OX1r and OX2r within the CA1 in response to acute pain after exposure to forced swim stress (FSS) for a 6-min period. Adult male Wistar rats received different doses of OX1r antagonist (SB334867; 1, 3, 10, and 30 nmol), OX2r antagonist (TCS OX2 29; 3, 10, 30 and 100 nmol), or vehicle (0.5µl DMSO) through an implanted cannula. After that, animals individually experienced acute pain by performing the tail-flick test. Results indicated that FSS produces antinociceptive responses in the tail-flick test. Blockade of both orexin receptors within the CA1 region attenuated the analgesic effect of FSS. The antinociceptive effect of swim stress was prevented by lower doses of SB334867 than TCS OX2 29. These findings show that the orexinergic system might be partially involved in the SIA via the OX1 and OX2 receptors in the hippocampal CA1 region.

Learn More >

Medical Cannabis for Gynecologic Pain Conditions: A Systematic Review.

The endocannabinoid system is involved in pain perception and inflammation. Cannabis contains delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), which are cannabinoids that bind to endocannabinoid system receptors. A fatty acid amide called palmitoylethanolamide (PEA) enhances endogenous cannabinoids. Given that use of medical cannabis is increasing, we sought to characterize patterns of cannabis use for gynecologic pain and its effectiveness as an analgesic.

Learn More >

Trends in Opioid Use Among Cancer Patients in the United States: 2013-2018.

In response to the US opioid epidemic, the Centers for Disease Control and Prevention updated their guideline on prescription opioids for chronic pain management in March 2016. The aim of this study was to provide detailed analysis of trends in opioid claims among cancer patients in the United States during 2013-2018.

Learn More >

Regional anaesthesia in patients on antithrombotic drugs: Joint ESAIC/ESRA guidelines.

Bleeding is a potential complication after neuraxial and peripheral nerve blocks. The risk is increased in patients on antiplatelet and anticoagulant drugs. This joint guideline from the European Society of Anaesthesiology and Intensive Care and the European Society of Regional Anaesthesia aims to provide an evidence-based set of recommendations and suggestions on how to reduce the risk of antithrombotic drug-induced haematoma formation related to the practice of regional anaesthesia and analgesia.

Learn More >

Multitarget nociceptor sensitization by a promiscuous peptide from the venom of the King Baboon spider.

The King Baboon spider, , is a burrowing African tarantula. Its impressive size and appealing coloration are tempered by reports describing severe localized pain, swelling, itchiness, and muscle cramping after accidental envenomation. Hyperalgesia is the most prominent symptom after bites from , but the molecular basis by which the venom induces pain is unknown. Proteotranscriptomic analysis of venom uncovered a cysteine-rich peptide, δ/κ-theraphotoxin-Pm1a (δ/κ-TRTX-Pm1a), that elicited nocifensive behavior when injected into mice. In small dorsal root ganglion neurons, synthetic δ/κ-TRTX-Pm1a (sPm1a) induced hyperexcitability by enhancing tetrodotoxin-resistant sodium currents, impairing repolarization and lowering the threshold of action potential firing, consistent with the severe pain associated with envenomation. The molecular mechanism of nociceptor sensitization by sPm1a involves multimodal actions over several ion channel targets, including Na1.8, K2.1, and tetrodotoxin-sensitive Na channels. The promiscuous targeting of peptides like δ/κ-TRTX-Pm1a may be an evolutionary adaptation in pain-inducing defensive venoms.

Learn More >

Isobolographic analysis of antinociceptive effect of ketorolac, indomethacin, and paracetamol after simultaneous peripheral local and systemic administration.

This study was designed to characterize the type of interaction (subadditive, additive, or synergistic) after simultaneous administration by two different routes (intraperitoneal plus peripheral local) of the same nonsteroidal anti-inflammatory drugs (NSAID) ketorolac and indomethacin or paracetamol. The antinociceptive effects of locally or intraperitoneally delivery of NSAIDs or paracetamol, and the simultaneous administration by the two routes at fixed-dose ratio combination were evaluated using the formalin test. Pain-related behavior was quantified as the number of flinches of the injected paw. Isobolographic analysis was used to characterize the interaction between the two routes. ED30 values were estimated for individual drugs, and isobolograms were constructed. Ketorolac, indomethacin, or paracetamol and fixed-dose ratio combinations produced a dose-dependent antinociceptive effect in the second but not in the first phase of the formalin test. The analysis of interaction type after simultaneous administration by the two routes the same NSAID or paracetamol (on basis of their ED30), revealed that the simultaneous administration of ketorolac or paracetamol was additive and for indomethacin was synergistic. Since the mechanisms underlying the additive effect of ketorolac or paracetamol and the synergistic effect of indomethacin were not explored; it is possible that the peripheral and central mechanism is occurring at several anatomical sites. The significance of these findings for theory and pain pharmacotherapy practice indicates that the combination of one analgesic drug given simultaneously by two different administration routes could be an additive or it could lead to a synergistic interaction.

Learn More >

Prevalence of Pain Management Techniques Among Adults With Chronic Pain in the United States, 2019.

Learn More >

Tapentadol shows lower intrinsic efficacy at µ receptor than morphine and oxycodone.

Tapentadol is a centrally acting analgesic with a dual mechanism of action. It acts as an agonist at the µ receptor and inhibitor of noradrenaline reuptake. Clinical trials suggest similar analgesic efficacy of tapentadol, oxycodone, and morphine in acute and chronic pain. Given the limited information about the molecular actions of tapentadol at the µ receptor, we investigated the intrinsic efficacy of tapentadol and compared it with other opioids. β-chlornaltrexamine (β-CNA, 100 nM, 20 min) was used to deplete spare receptors in AtT20 cells stably transfected with human µ receptor wild-type (WT). Opioid-mediated changes in membrane potential were measured in real-time using a membrane potential-sensitive fluorescent dye. Using Black and Leff's operational model, intrinsic efficacy relative to DAMGO was calculated for each opioid. Tapentadol (0.05 ± 0.01) activated the GIRK channel with lesser intrinsic efficacy than morphine (0.17 ± 0.02) and oxycodone (0.16 ± 0.02). We further assessed the signaling of tapentadol in the common µ receptor variants (N40D and A6V) which are associated with altered receptor signaling. We found no difference in the response of tapentadol between these receptor variants.

Learn More >

Involvement of the BDNF-TrkB-KCC2 pathway in neuropathic pain after brachial plexus avulsion.

Brachial plexus avulsion significantly increased brain-derived neurotrophic factor (BDNF) release in the spinal cord. Here we investigated the involvement of the BDNF-TrkB-KCC2 pathway in neuropathic pain caused by BPA injury. We hypothesized that activation of BDNF-TrkB may inhibit neuronal excitability by downregulating KCC2 to maintain a high intracellular Cl-concentration. We established a neuropathic pain rat model by avulsion of the lower trunk brachial plexus, and investigated the effects of the TrkB-specific antibody K-252a on the expression of BDNF, TrkB, and KCC2.

Learn More >

Systematic review and meta-analysis of the efficacy of gabapentin in chronic female pelvic pain without another diagnosis.

While widely used for the treatment of chronic pelvic pain, limited data exists on efficacy of gabapentin, especially in the subgroup of women suffering from chronic pelvic pain without a known diagnosis, such as endometriosis.

Learn More >

Search