I am a
Home I AM A Search Login

Pharmacology/Drug Development

Share this

Efficacy and Safety of a New Sustained-released Pregabalin Formulation Compared with Immediate-release Pregabalin in Patients with Peripheral Neuropathic Pain: A Randomized Non-inferiority Phase 3 Trial.

This study investigated whether a new sustained-release (SR) pregabalin formulation is non-inferior to immediate-release (IR) pregabalin in alleviating peripheral neuropathic pain in Korean patients.

Learn More >

Mechanistic Insights into the Anti-Pruritic Effects of Lebrikizumab, an Anti-IL-13 Monoclonal Antibody.

Atopic dermatitis (AD) is a chronic, inflammatory skin disease with persistent and severe itch among its hallmark features. Significant increases in type 2 cytokines (i.e., IL-4, IL-13, IL-31) have been documented in acute AD lesions and lead to multi-faceted downstream effects, including inflammation, epidermal barrier dysfunction, and itch.

Learn More >

Investigating the Long-Term Effect of an Interdisciplinary Multimodal Rehabilitation Program on Levels of Bioactive Lipids and Telomerase Activity in Blood from Patients with Chronic Pain.

Mechanism-based diagnosis and therapies for chronic pain are lacking. However, bio-psycho-social interventions such as interdisciplinary multimodal rehabilitation programs (IPRPs) have shown to be relatively effective treatments. In this context we aim to investigate the effects of IPRP on the changes in levels of bioactive lipids and telomerase activity in plasma, and if these changes are associated with changes in pain intensity and psychological distress. This exploratory study involves 18 patients with complex chronic pain participating in an IPRP. Self-reports of pain, psychological distress, physical activity, and blood samples were collected before the IPRP and at a six-month follow-up. Levels of arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG), palmitoylethanolamide (PEA), oleoylethanolamide (OEA), stearoylethanolamide (SEA), and telomerase activity were measured. Pain intensity was decreased, and SEA levels were increased at the six-month follow up. A significant correlation existed between changes in SEA levels and pain intensity. AEA levels, were inversely correlated with physical activity. Furthermore, 2-AG and telomerase activity was significantly correlated at the six-month follow-up. This study confirms that IPRP is relatively effective for reduction in chronic pain. Changes in SEA were correlated with changes in pain intensity, which might indicate that SEA changes reflect the pain reduction effects of IPRP.

Learn More >

LXR agonist improves peripheral neuropathy and modifies PNS immune cells in aged mice.

Peripheral neuropathy is a common and progressive disorder in the elderly that interferes with daily activities. It is of importance to find efficient treatments to treat or delay this age-related neurodegeneration. Silencing macrophages by reducing foamy macrophages showed significant improvement of age-related degenerative changes in peripheral nerves of aged mice. We previously demonstrated that activation of the cholesterol sensor Liver X receptor (LXR) with the potent agonist, GW3965, alleviates pain in a diet-induced obesity model. We sought to test whether LXR activation may improve neuropathy in aged mice.

Learn More >

Lipidomic Profiling Identifies Serum Lipids Associated with Persistent Multisite Musculoskeletal Pain.

Lipid mediators have been suggested to have a role in pain sensitivity and response; however, longitudinal data on lipid metabolites and persistent multisite musculoskeletal pain (MSMP) are lacking. This study was to identify lipid metabolic markers for persistent MSMP. Lipidomic profiling of 807 lipid species was performed on serum samples of 536 participants from a cohort study. MSMP was measured by a questionnaire and defined as painful sites ≥4. Persistent MSMP was defined as having MSMP at every visit. Logistic regression was used with adjustment for potential confounders. The Benjamini-Hochberg method was used to control for multiple testing. A total of 530 samples with 807 lipid metabolites passed quality control. Mean age at baseline was 61.54 ± 6.57 years and 50% were females. In total, 112 (21%) of the participants had persistent MSMP. Persistent MSMP was significantly associated with lower levels of monohexosylceramide (HexCer)(d18:1/22:0 and d18:1/24:0), acylcarnitine (AC)(26:0) and lysophosphatidylcholine (LPC)(18:1 [sn1], 18:2 [sn1], 18:2 [sn2], and 15-MHDA[sn1] [104_sn1]) after controlling for multiple testing. After adjustment for age, sex, body mass index, comorbidities, and physical activity, HexCer(d18:1/22:0 and d18:1/24:0) and LPC(15-MHDA [sn1] [104_sn1]) were significantly associated with persistent MSMP [Odds Ratio (OR) ranging from 0.25-0.36]. Two lipid classes-HexCer and LPC-were negatively associated with persistent MSMP after adjustment for covariates (OR = 0.22 and 0.27, respectively). This study identified three novel lipid signatures of persistent MSMP, suggesting that lipid metabolism is involved in the pathogenesis of persistent pain.

Learn More >

Sex-dependent antiallodynic effect of α adrenergic receptor agonist tizanidine in rats with experimental neuropathic pain.

The purpose of this study was to investigate the mechanism of antiallodynic effect of tizanidine in neuropathic rats. Spinal nerve ligation reduced withdrawal threshold which was interpreted as tactile allodynia. Increasing doses of tizanidine induced a dose-dependent antiallodynic effect in nerve injured rats. Tizanidine was more effective in female than male neuropathic rats. This drug induced a lower antiallodynic effect in ovariectomized, compared with non-ovariectomized, neuropathic rats, while systemic reconstitution of estradiol (E2) levels in ovariectomized neuropathic females fully restored the antiallodynic effect of tizanidine. Naloxone reduced the antiallodynic effect of tizanidine in male but not in female neuropathic rats. Ovariectomy restored the antagonizing effect of naloxone in the antiallodynic effect of tizanidine, whereas treatment with E2 abolished the effect of naloxone on tizanidine activity. Rauwolscine (α antagonist) and imiloxan (α antagonist) completely abated tizanidine-induced antiallodynic effect in female neuropathic rats. In contrast, BRL-44408 (α antagonist) partially decreased the effect of tizanidine while JP-1302 (α antagonist) was ineffective. Rauwolscine, imiloxan and BRL-44408 decreased withdrawal threshold in naïve female rats. Rauwolscine did not modify withdrawal threshold in naïve male rats. AGN192403 (I antagonist), BU224 (I antagonist), prazosin (α antagonist) and methiothepin (5-HT antagonist) did not modify tizanidine-induced antiallodynia in neuropathic females and males. These data indicate that tizanidine exhibits a sex-dependent antiallodynic effect in neuropathy. Data also suggest that activation of adrenergic α and α and opioid receptors participate in the antiallodynic effect of tizanidine in female and male, respectively, neuropathic rats.

Learn More >

Effects of pharmacist interventions on pain intensity: Systematic review and meta-analysis of randomized controlled trials.

Pharmacists can play an important role in pain management.

Learn More >

Chondroitin and glucosamine sulphate reduced proinflammatory molecules in the DRG and improved axonal function of injured sciatic nerve of rats.

Neuropathic pain (NP) is an abnormality resulting from lesion or damage to parts of the somatosensory nervous system. It is linked to defective quality of life and often poorly managed. Due to the limited number of approved drugs, limited efficacy and side effects associated with the approved drugs, drugs or drug combinations with great efficacy and very minimal or no side effects will be of great advantage in managing NP. This study aimed at investigating the synergistic antinociceptive effects of the combination of glucosamine sulphate (GS) (240 mg/kg) and chondroitin sulphate (CS) (900 mg/kg) in chronic constriction injury (CCI)-induced neuropathy in rats. Forty-two Wistar rats were randomly distributed into seven groups (n = 6). Sciatic nerve was ligated with four loose ligatures to induce NP. Effects of drugs were examined on stimulus and non-stimulus evoked potentials, expression of dorsal root ganglia (DRG) pain modulators and structural architecture of DRG. Oral administration of GS and CS for 21 days reduced hyperalgesia, allodynia, sciatic nerve functional aberration and DRG pain modulators. Histopathology and immunohistochemistry revealed restoration of structural integrity of DRG. Our result showed that the combination of GS and CS produced antinociceptive effects by attenuating hyperalgesia, allodynia and downregulation of NP mediators. GS and CS additionally produced synergistic analgesic effect over its individual components.

Learn More >

Enhanced skin penetration of berberine from proniosome gel attenuates pain and inflammation in a mouse model of osteoarthritis.

Dermal delivery of bioactive molecules remains an attractive route of administration in osteoarthritis (OA) due to the local accumulation of drugs while avoiding their systemic side effects. In this study we propose a proniosome gel comprising non-ionic surfactants that self-assemble into de-hydrated vesicles for the delivery of the natural anti-inflammatory compound berberine. By modulating the hydrating ability of the proniosome gel, berberine can be efficiently released with minimal mechanical force. A combination of sorbitan oleate (S80) and polyethlene glycol sorbitan monolaurate (T20) in a sorbitan stearate (S60)-based proniosome enables a readily hydrated gel to deliver berberine into the skin, as confirmed by skin permeation studies. Concurrently, an model of OA using primary mouse chondrocytes demonstrated that the release of berberine at a concentration as low as 1 μg mL is sufficient to restore the production of sulphated glycosaminoglycans (sGAG) to levels comparable to healthy chondrocytes while avoiding the cytotoxic concentrations (IC = 33 μg mL) on skin keratinocytes. In a mouse model of OA, the optimized formulation is able to attenuate inflammation and pain and minimize cartilage degeneration. Taken together, these data demonstrate the feasibility of adopting proniosome gels as a suitable platform to deliver active molecules for the management of osteoarthritis.

Learn More >

Sphingosine-1-Phosphate Levels Are Higher in Male Patients with Non-Classic Fabry Disease.

Fabry disease is an X-linked lysosomal disease in which defects in the alpha-galactosidase A enzyme activity lead to the ubiquitous accumulation of glycosphingolipids. Whereas the classic disease is characterized by neuropathic pain, progressive renal failure, white matter lesions, cerebral stroke, and hypertrophic cardiomyopathy (HCM), the non-classic phenotype, also known as cardiac variant, is almost exclusively characterized by HCM. Circulating sphingosine-1-phosphate (S1P) has controversially been associated with the Fabry cardiomyopathy. We measured serum S1P levels in 41 patients of the FFABRY cohort. S1P levels were higher in patients with a non-classic phenotype compared to those with a classic phenotype (200.3 [189.6-227.9] vs. 169.4 ng/mL [121.1-203.3], = 0.02). In a multivariate logistic regression model, elevated S1P concentration remained statistically associated with the non-classic phenotype (OR = 1.03; < 0.02), and elevated lysoGb3 concentration with the classic phenotype (OR = 0.95; < 0.03). S1P levels were correlated with interventricular septum thickness (r = 0.46; = 0.02). In a logistic regression model including S1P serum levels, phenotype, and age, age remained the only variable significantly associated with the risk of HCM (OR = 1.25; = 0.001). S1P alone was not associated with cardiac hypertrophy but with the cardiac variant. The significantly higher S1P levels in patients with the cardiac variant compared to those with classic Fabry suggest the involvement of distinct pathophysiological pathways in the two phenotypes. S1P dosage could allow the personalization of patient management.

Learn More >

Search