I am a
Home I AM A Search Login

Animal Studies

Share this

Disruption of the Sensory System Affects Sterile Cutaneous Inflammation in vivo.

Increasing evidence suggests that nerve fibers responding to noxious stimuli (nociceptors) modulate immunity in a variety of tissues including the skin. Yet, a role for nociceptors in regulating sterile cutaneous inflammation remains unexplored. To tackle this question, we have developed a detailed description of the sterile inflammation caused by overexposure to UVB irradiation (i.e. sunburn) in the mouse plantar skin. Using this model, we observed that chemical depletion of nociceptor terminals did not alter the early phase of the inflammatory response to UVB, but it caused a significant increase in the number of dendritic cells and αβ T cells as well as enhanced extravasation during the later stages of inflammation. Finally, we showed that such regulation was driven by the nociceptive neuropeptide Calcitonin Gene Related Peptide. In conclusion, we propose that nociceptors do not only play a crucial role in inflammation through avoidance reflexes and behaviors but can also regulate sterile cutaneous immunity in vivo.

Learn More >

CXCL12/CXCR4 signaling contributes to neuropathic pain via central sensitization mechanisms in a rat spinal nerve ligation model.

Previous studies have demonstrated that the CXCL12/CXCR4 signaling axis is involved in the regulation of neuropathic pain (NP). Here, we performed experiments to test whether the CXCL12/CXCR4 signaling pathway contributes to the pathogenesis of neuropathic pain after spinal nerve ligation (SNL) via central sensitization mechanisms.

Learn More >

Zebrafish oxytocin neurons drive nocifensive behavior via brainstem premotor targets.

Animals have evolved specialized neural circuits to defend themselves from pain- and injury-causing stimuli. Using a combination of optical, behavioral and genetic approaches in the larval zebrafish, we describe a novel role for hypothalamic oxytocin (OXT) neurons in the processing of noxious stimuli. In vivo imaging revealed that a large and distributed fraction of zebrafish OXT neurons respond strongly to noxious inputs, including the activation of damage-sensing TRPA1 receptors. OXT population activity reflects the sensorimotor transformation of the noxious stimulus, with some neurons encoding sensory information and others correlating more strongly with large-angle swims. Notably, OXT neuron activation is sufficient to generate this defensive behavior via the recruitment of brainstem premotor targets, whereas ablation of OXT neurons or loss of the peptide attenuates behavioral responses to TRPA1 activation. These data highlight a crucial role for OXT neurons in the generation of appropriate defensive responses to noxious input.

Learn More >

Differential effect of FHM2 mutation on synaptic plasticity in distinct hippocampal regions.

Familial hemiplegic migraine 2 is a pathology linked to mutation of the ATP1A2 gene producing loss of function of the α2 Na/K-ATPase (NKA). W887R/+ knock-in (KI) mice are used to model the familial hemiplegic migraine 2 condition and are characterized by 50% reduced NKA expression in the brain and reduced rate of K and glutamate clearance by astrocytes. These alterations might, in turn, produce synaptic changes in synaptic transmission and plasticity. Memory and learning deficits observed in familial hemiplegic migraine patients could be ascribed to a possible alteration of hippocampal neuronal plasticity and measuring possible changes of long-term potentiation in familial hemiplegic migraine 2 KI mice might provide insights to strengthen this link.

Learn More >

A Dual Amylin and Calcitonin Receptor Agonist inhibits pain behavior and reduces cartilage pathology in an osteoarthritis rat model.

Pain and disability are the main clinical manifestations of osteoarthritis, for which only symptomatic therapies are available. Hence, there is a need for therapies that can simultaneously alter disease progression and provide pain relief. KBP is a dual amylin- and calcitonin-receptor agonist with antiresorptive and chondroprotective properties. In this study we investigated the effect of KBP in a rat model of osteoarthritis.

Learn More >

Cathepsin E in neutrophils contributes to the generation of neuropathic pain in experimental autoimmune encephalomyelitis.

Pain is a frequent and disabling symptom in multiple sclerosis (MS) patients; however, the underlying mechanisms of MS-related pain is not fully understood. Here, we demonstrated that cathepsin E (CatE) in neutrophils contributes to the generation of mechanical allodynia in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. We showed that CatE-deficient (CatE) mice were highly resistant to myelin oligodendrocyte glycoprotein (MOG35-55)-induced mechanical allodynia. After MOG35-55 immunization, neutrophils immediately accumulated in the dorsal root ganglion (DRG). Adoptive transfer of MOG35-55-stimulated wild-type neutrophils into the DRG induced mechanical allodynia in the recipient C57BL/6 mice. On the other hand, the pain threshold did not change when MOG35-55-stimulated CatE neutrophils were transferred into the recipient C57BL/6 mice. MOG35-55 stimulation caused CatE-dependent secretion of elastase in neutrophils. Behavioral analyses revealed that sivelestat, a selective neutrophil elastase inhibitor, suppressed mechanical allodynia induced by adoptively transferred MOG35-55-stimulated neutrophils. MOG35-55 directly bound to toll-like receptor 4, which led to increased production of CatE in neutrophils. Our findings suggest that inhibition of CatE-dependent elastase production in neutrophil might be a potential therapeutic target for pain in MS patients.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

Learn More >

High-threshold primary afferent supply of spinal lamina X neurons.

The spinal gray matter region around the central canal, lamina X, is critically involved in somatosensory processing and visceral nociception. Although several classes of primary afferent fibers terminate or decussate in this area, little is known about organization and functional significance of the afferent supply of lamina X neurons. Using the hemisected ex vivo spinal cord preparation, we show that virtually all lamina X neurons receive primary afferent inputs, which are predominantly mediated by the high-threshold Aδ- fibers and C-fibers. In two-thirds of the neurons tested, the inputs were monosynaptic, implying a direct targeting of the population of lamina X neurons by the primary nociceptors. Beside the excitatory inputs, 48% of the neurons also received polysynaptic inhibitory inputs. A complex pattern of interactions between the excitatory and inhibitory components determined the output properties of the neurons, one-third of which fired spikes in response to the nociceptive dorsal root stimulation. In this respect, the spinal gray matter region around the central canal is similar to the superficial dorsal horn, the major spinal nociceptive processing area. We conclude that lamina X neurons integrate direct and indirect inputs from several types of thin primary afferent fibers and play an important role in nociception.

Learn More >

Females have greater susceptibility to develop ongoing pain and central sensitization in a rat model of temporomandibular joint pain.

Temporomandibular joint osteoarthritis (TMJOA) is a prevalent source of temporomandibular joint disorder (TMD). Women are more commonly diagnosed with TMD and are more likely to seek care at tertiary orofacial pain clinics. Limited knowledge regarding mechanisms underlying temporomandibular joint (TMJ) pain impairs development of improved pain management strategies. In a rat model of unilateral TMJOA, monosodium iodoacetate (MIA) produces joint pathology in a concentration-dependent manner. Unilateral MIA produces alterations in meal patterns in males and females without altering overnight time spent eating or weight across 2 weeks. Monosodium iodoacetate (80 mg/mL)-treated males develop ongoing pain within 2 weeks after MIA injection. Females develop ongoing pain at a 5-fold lower MIA concentration (16.6 mg/m). Monosodium iodoacetate (80 mg/mL)-treated males show spread of tactile hypersensitivity across the face during the first week after injection and then to the fore paws and hind paws during the second week after injection, indicating development of central sensitization. At the lower dose, female rats demonstrate a similar spread of tactile hypersensitivity, whereas male rats do not develop ongoing pain or spread of tactile hypersensitivity outside the area of the ipsilateral temporomandibular joint. These observations indicate that females have a higher susceptibility to development of ongoing pain and central sensitization compared with male rats that is not due to differences in MIA-induced joint pathology. This model of TMJOA pain can be used to explore sex differences in pain processes implicated in development of neuropathic pain, ongoing pain, and central sensitization, allowing for development of individualized strategies for prevention and treatment of TMD joint pain.

Learn More >

Dietary supplementation of omega-3 fatty acid eicosapentaenoic acid does not ameliorate pruritus in murine models of atopic dermatitis and psoriasis.

Learn More >

Trigeminal Pain Responses in Obese ob/ob Mice Are Modality-Specific.

How obesity exacerbates migraine and other pain disorders remains unknown. Trigeminal nociceptive processing, crucial in migraine pathophysiology, is abnormal in mice with diet induced obesity. However, it is not known if this is also true in genetic models of obesity. We hypothesized that obese mice, regardless of the model, have trigeminal hyperalgesia. To test this, we first evaluated trigeminal thermal nociception in leptin deficient (ob/ob) and control mice using an operant thermal assay. Unexpectedly, we found significant hypoalgesia in ob/ob mice. Because thermal hypoalgesia also occurs in mice lacking the transient receptor potential vanilloid 1 channel (TRPV1), we tested capsaicin-evoked trigeminal nociception. Ob/ob and control mice had similar capsaicin-evoked nocifensive behaviors, but ob/ob mice were significantly less active after a facial injection of capsaicin than were diet-induced obese mice or lean controls. Conditioned place aversion in response to trigeminal stimulation with capsaicin was similar in both genotypes, indicating normal negative affect and pain avoidance. Supporting this, we found no difference in TRPV1 expression in the trigeminal ganglia of ob/ob and control mice. Finally, we assessed the possible contribution of hyperphagia, a hallmark of leptin deficiency, to the behavior observed in the operant assay. Ob/ob and lean control mice had similar reduction of intake when quinine or capsaicin was added to the sweetened milk, excluding a significant contribution of hyperphagia. In summary, ob/ob mice, unlike mice with diet-induced obesity, have trigeminal thermal hypoalgesia but normal responses to capsaicin, suggesting specificity in the mechanisms by which leptin acts in pain processing.

Learn More >

Search