I am a
Home I AM A Search Login

Animal Studies

Share this

Loss of endogenous analgesia leads to delayed recovery from incisional pain in a rat model of chronic neuropathic pain.

Preoperative pain and impaired endogenous analgesia are risk factors of chronic postsurgical persistent pain (CPSP). A Chronic neuropathic pain model induced by spinal nerve ligation (SNL6W) shows impaired endogenous analgesia and delayed recovery from incisional pain. Repeated amitriptyline treatment can restore the endogenous analgesia, but its effects on delayed recovery are not clear.

Learn More >

Enzymatic ligation of a pore blocker toxin and gating modifier toxin; creating double-knotted peptides with improved sodium channel NaV1.7 inhibition.

Disulfide-rich animal venom peptides targeting either the voltage-sensing domain or the pore domain of voltage-gated sodium channel 1.7 (NaV1.7) have been widely studied as drug leads and pharmacological probes for the treatment of chronic pain. However, despite intensive research efforts, the full potential of NaV1.7 as a therapeutic target is yet to be realized. In this study, using evolved sortase A, we enzymatically ligated two known NaV1.7 inhibitors  PaurTx3, a spider-derived peptide toxin that modifies the gating mechanism of the channel through interaction with the voltage-sensing domain, and KIIIA, a small cone snail-derived peptide inhibitor of the pore domain  with the aim of creating a bivalent inhibitor which could interact simultaneously with two non-competing binding sites. Using electrophysiology, we determined the activity at NaV1.7 and to maximize potency, we systematically evaluated the optimal linker length, which was nine amino acids. Our optimized synthetic bivalent peptide showed improved channel affinity and potency at NaV1.7 compared to either PaurTx3 or KIIIA individually. This work shows that novel and improved NaV1.7 inhibitors can be designed by combining a pore blocker toxin and a gating modifier toxin to confer desired pharmacological properties from both the voltage sensing domain and the pore domain.

Learn More >

Antinociceptive effects of treadmill exercise in a rat model of Parkinson’s disease: the role of cannabinoid and opioid receptors.

In addition to motor symptoms, Parkinson's disease (PD) presents high prevalence of painful symptoms responsible for worsening quality of life of PD patients. Physical exercise can improve such painful symptoms. This study evaluated the effects of exercise on nociceptive threshold using an unilateral rat model of PD, as well as the role played by cannabinoid and opioid receptors in areas responsible for pain pathways. For PD induction, Wistar rats were injected with 6-OHDA. 15 days after, rats either remained sedentary or were forced to exercise three times a week for 40 minutes. Motor and nociceptive behaviors were evaluated through cylinder and mechanical hyperalgesia tests, respectively. The animals were euthanized for analysis of cannabinoid, cannabinoid receptor type 1 (CB1) and type 2 (CB2), and μ-opioid receptor (MOR) in the anterior cingulate cortex (ACC), periaqueductal gray matter (PAG), and thalamus areas by immunohistochemistry (IHC) and Western blotting. Our data revealed a decrease in the nociceptive threshold in both forepaws after surgery; in contrast, there was improvement in painful symptoms after the exercise protocol. For cannabinoid system there were an increase in CB2 expression in the ACC and PAG, and in CB1 levels in the PAG. And for opioid system there was an increase of MOR expression in the thalamus. Thus, modulation of those receptors by physical exercise can be an important non-pharmacological intervention to reduce painful symptoms in a rat model of PD, thus contributing to knowledge and promotion of better treatment aimed at improving the quality of life of PD patients.

Learn More >

Microglia P2X4R-BDNF signalling contributes to central sensitization in a recurrent nitroglycerin-induced chronic migraine model.

According to our previous study, microglia P2X4 receptors (P2X4Rs) play a pivotal role in the central sensitization of chronic migraine (CM). However, the molecular mechanism that underlies the crosstalk between microglia P2X4Rs and neurons of the trigeminal nucleus caudalis (TNC) is not fully understood. Therefore, the aim of this study is to examine the exact P2X4Rs signalling pathway in the development of central sensitization in a CM animal model.

Learn More >

BDNF promotes activation of astrocytes and microglia contributing to neuroinflammation and mechanical allodynia in cyclophosphamide-induced cystitis.

Patients with interstitial cystitis/bladder pain syndrome (IC/BPS) often grieve over a low quality of life brought about by chronic pain. In our previous studies, we determined that neuroinflammation of the spinal dorsal horn (SDH) was associated with mechanisms of interstitial cystitis. Moreover, it has been shown that brain-derived neurotrophic factor (BDNF) participates in the regulation of neuroinflammation and pathological pain through BDNF-TrkB signaling; however, whether it plays a role in cyclophosphamide (CYP)-induced cystitis remains unclear. This study aimed to confirm whether BDNF-TrkB signaling modulates neuroinflammation and mechanical allodynia in CYP-induced cystitis and determine how it occurs.

Learn More >

Spinal SNAP-25 regulates membrane trafficking of GluA1-containing AMPA receptors in spinal injury-induced neuropathic pain in rats.

Synaptosomal associated proteins of 25 kDa (SNAP-25), as a member of stable soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex, is critical for membrane fusion and required for the release of neurotransmitters. The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor is implicated in pathologic pain. This study aimed to investigate whether and how SNAP-25 regulated AMPA receptors in neuropathic pain.

Learn More >

Intrathecal administration of SRT1720 relieves bone cancer pain by inhibiting the CREB/CRTC1 signalling pathway.

Bone cancer pain (BCP) caused by primary or metastatic bone tumours significantly interferes with the quality of life of patients. However, the relief of BCP remains a major challenge. Our previous study demonstrated that intrathecal administration of the Sirtuin 1 (SIRT1) activator SRT1720 attenuated BCP in a murine model. Nevertheless, the underlying mechanisms have not been fully clarified. Previous studies demonstrated that the activation of the cAMP response element binding (CREB) protein played a critical role in BCP. Furthermore, SIRT1 can also regulate the balance between glucose and lipid metabolism through CREB deacetylation. In this study, we measured the analgesic effects of different intrathecal doses of SRT1720 on BCP in a murine model and further examined whether SRT1720 attenuated BCP by suppressing CREB/CREB-regulated transcription coactivator 1 (CRTC1) signalling pathway. Our results demonstrated that the BCP mice developed significant mechanical allodynia and spontaneous flinching, which were accompanied by the upregulation of phospho-Ser133 CREB (p-CREB) and CRTC1 expression in the spinal cord. SRT1720 treatment produced a dose-dependent analgesic effect on the BCP mice and downregulated the expression of p-CREB and CRTC1. These results suggest that intrathecal administration of SRT1720 reverses BCP likely by inhibiting the CREB/CRTC1 signalling pathway.

Learn More >

The mechanism of chronic nicotine exposure and nicotine withdrawal on pain perception in an animal model.

It has been demonstrated that smoking is associated with an increase in postoperative and chronic pain. The changes in the pain-related neural pathways responsible for these effects are unknown. Additionally, the effects of nicotine withdrawal, resulting from smoking abstinence preoperatively, has not been evaluated in terms of its impact on pain sensation. In this study, an animal model has been used to assess these effects. A rat model of long-term nicotine exposure was used. Von Frey mechanical sensory tests were performed. Western Blot and immunohistological analysis were conducted on spinal cord samples. Mechanical sensory thresholds increased in the initial period (1-3 weeks), indicating hyposensitivity. Long-term (4 -10 weeks) and under nicotine withdrawal, the mechanical sensory thresholds decreased, indicating hyperalgesia. During short-term nicotine exposure, glutamate decarboxylase 67 (GAD67), GAD65, and μ-opioid receptors (MOR) up-regulated. Beta-endorphins down-regulated. Increased γ -aminobutyric acid (GABA) and MOR appear responsible for the hyposensitivity since the GABA receptor antagonist, bicuculline and opioid receptor antagonist, naloxone decreased the mechanical thresholds of nicotine-induced hyposensitivity. In long-term nicotine exposure, the expression of GAD67, MOR, and GABA decreased. Baclofen, a derivative of GABA, reversed the hyperalgesia seen with nicotine withdrawal. Therefore, nicotine acts as an analgesic when used acutely or short-term. Long-term exposure or nicotine withdrawal (similar to smoking cessation) results in hyperalgesia. Nicotine appears to alter pain sensitivity by affecting the expression of GAD65, GAD67, MOR, endorphins, and GABA. This may partially explain the increased pain and opioid use seen in chronic smokers in the postoperative period.

Learn More >

Gut-Innervating Nociceptor Neurons Regulate Peyer’s Patch Microfold Cells and SFB Levels to Mediate Salmonella Host Defense.

Gut-innervating nociceptor sensory neurons respond to noxious stimuli by initiating protective responses including pain and inflammation; however, their role in enteric infections is unclear. Here, we find that nociceptor neurons critically mediate host defense against the bacterial pathogen Salmonella enterica serovar Typhimurium (STm). Dorsal root ganglia nociceptors protect against STm colonization, invasion, and dissemination from the gut. Nociceptors regulate the density of microfold (M) cells in ileum Peyer's patch (PP) follicle-associated epithelia (FAE) to limit entry points for STm invasion. Downstream of M cells, nociceptors maintain levels of segmentous filamentous bacteria (SFB), a gut microbe residing on ileum villi and PP FAE that mediates resistance to STm infection. TRPV1+ nociceptors directly respond to STm by releasing calcitonin gene-related peptide (CGRP), a neuropeptide that modulates M cells and SFB levels to protect against Salmonella infection. These findings reveal a major role for nociceptor neurons in sensing and defending against enteric pathogens.

Learn More >

Neuropeptide S-initiated sequential cascade mediated by OX, NK, mGlu and CB receptors: a pivotal role in stress-induced analgesia.

Stress-induced analgesia (SIA) is an evolutionarily conserved phenomenon during stress. Neuropeptide S (NPS), orexins, substance P, glutamate and endocannabinoids are known to be involved in stress and/or SIA, however their causal links remain unclear. Here, we reveal an unprecedented sequential cascade involving these mediators in the lateral hypothalamus (LH) and ventrolateral periaqueductal gray (vlPAG) using a restraint stress-induced SIA model.

Learn More >

Search