I am a
Home I AM A Search Login

Animal Studies

Share this

Neuronal aldosterone elicits a distinct genomic response in pain signaling molecules contributing to inflammatory pain.

Recently, mineralocorticoid receptors (MR) were identified in peripheral nociceptive neurons, and their acute antagonism was responsible for immediate and short-lasting (non-genomic) antinociceptive effects. The same neurons were shown to produce the endogenous ligand aldosterone by the enzyme aldosterone synthase.

Learn More >

NMDA and Purinergic Processes Modulate Neck Muscle Activity Evoked by Noxious Stimulation of Dura.

Adenosine triphosphate (ATP) and glutamate are associated with some headache conditions, and purinergic (P2X) and glutamatergic N-methyl-D-aspartate (NMDA) receptor-related processes in the medulla can modulate the effects of trigeminal nociceptive afferent inputs into the brainstem on craniofacial sensorimotor circuits. This study aimed to test whether neck muscle activity can be induced in rats by noxious stimulation of the frontal dura or superior sagittal sinus that involves P2X or NMDA receptor-dependent mechanisms.

Learn More >

Mapping the Molecular Surface of the Analgesic Na1.7-Selective Peptide Pn3a Reveals Residues Essential for Membrane and Channel Interactions.

Compelling human genetic studies have identified the voltage-gated sodium channel Na1.7 as a promising therapeutic target for the treatment of pain. The analgesic spider-venom-derived peptide μ-theraphotoxin-Pn3a is an exceptionally potent and selective inhibitor of Na1.7; however, little is known about the structure-activity relationships or channel interactions that define this activity. We rationally designed 17 Pn3a analogues and determined their activity at hNa1.7 using patch-clamp electrophysiology. The positively charged amino acids K22 and K24 were identified as crucial for Pn3a activity, with molecular modeling identifying interactions of these residues with the S3-S4 loop of domain II of hNa1.7. Removal of hydrophobic residues Y4, Y27, and W30 led to a loss of potency (>250-fold), while replacement of negatively charged D1 and D8 residues with a positively charged lysine led to increased potencies (>13-fold), likely through alterations in membrane lipid interactions. Mutating D8 to an asparagine led to the greatest improvement in Pn3a potency at Na1.7 (20-fold), while maintaining >100-fold selectivity over the major off-targets Na1.4, Na1.5, and Na1.6. The Pn3a[D8N] mutant retained analgesic activity , significantly attenuating mechanical allodynia in a clinically relevant mouse model of postsurgical pain at doses 3-fold lower than those with wild-type Pn3a, without causing motor-adverse effects. Results from this study will facilitate future rational design of potent and selective peptidic Na1.7 inhibitors for the development of more efficacious and safer analgesics as well as to further investigate the involvement of Na1.7 in pain.

Learn More >

P2Y Receptor Antagonists Reverse Chronic Neuropathic Pain in a Mouse Model.

Eight P2YR antagonists, including three newly synthesized analogues, containing a naphthalene or phenyl-triazolyl scaffold were compared in a mouse model of chronic neuropathic pain (sciatic constriction). P2YR antagonists rapidly (≤30 min) reversed mechano-allodynia, with maximal effects typically within 1 h after injection. Two analogues (4-[4-(4-piperidinyl)phenyl]-7-[4-(trifluoromethyl)phenyl]-2-naphthalenecarboxylic acid and -acetyl analogue , 10 μmol/kg, i.p.) achieved complete pain reversal (100%) at 1 to 2 h, with relief evident up to 5 h for (41%). A reversed triazole analogue reached 87% maximal protection. Receptor affinity was determined using a fluorescent antagonist binding assay, indicating similar mouse and human P2YR affinity. The mP2YR affinity was only partially predictive of efficacy, suggesting the influence of pharmacokinetic factors. Thus P2YR is a potential therapeutic target for treating chronic pain.

Learn More >

PPARγ activation mitigates mechanical allodynia in paclitaxel-induced neuropathic pain via induction of Nrf2/HO-1 signaling pathway.

Paclitaxel-induced neuropathic pain (PINP) is a dose-limiting side effect and is refractory to widely used analgesic drugs. Previous studies have demonstrated a protective role of peroxisome proliferator-activated receptor gama (PPARγ) in neuropathic pain. However, whether PPARγ activation could alleviate PINP remains to be elucidated. Our previous study has validated the analgesic effect of oltipraz, an nuclear factor erythroid-2 related factor 2 (Nrf2) activator, in a rat model of PINP. In this study, we tested the hypothesis that rosiglitazone, a selective agonist of PPARγ, could attenuate PINP through induction of Nrf2/heme oxygenase-1 (HO-1) signaling pathway. Paclitaxel was injected intraperitoneally on four alternate days to induce neuropathic pain. Paw withdrawal threshold was used to evaluate mechanical allodynia. Western blot and immunofluorescence were used to examine the expression and distribution of PPARγ, Nrf2 and HO-1 in the spinal cord. Our results showed that rosiglitazone attenuated established PINP and delayed the onset of PINP via activation of PPARγ, which were reversed by PPARγ antagonist GW9662. Moreover, rosiglitazone inhibited downregulation of PPARγ in the spinal cord of PINP rats. Furthermore, the analgesic effect of rosiglitazone against PINP was abolished by trigonelline, an Nrf2 inhibitor. Finally, rosiglitazone significantly increased expression of Nrf2 and HO-1 in the spinal cord of PINP rats. Collectively, these results indicated that PPARγ activation might mitigate PINP through activating spinal Nrf2/HO-1 signaling pathway. Our results may provide an alternative option for PINP patients.

Learn More >

Characterization of Synthetic Tf2 as a Na1.3 Selective Pharmacological Probe.

Na1.3 is a subtype of the voltage-gated sodium channel family. It has been implicated in the pathogenesis of neuropathic pain, although the contribution of this channel to neuronal excitability is not well understood. Tf2, a β-scorpion toxin previously identified from the venom of , has been reported to selectively activate Na1.3. Here, we describe the activity of synthetic Tf2 and assess its suitability as a pharmacological probe for Na1.3. As described for the native toxin, synthetic Tf2 (1 µM) caused early channel opening, decreased the peak current, and shifted the voltage dependence of Na1.3 activation in the hyperpolarizing direction by -11.3 mV, with no activity at Na1.1, Na1.2, and Na1.4-Na1.8. Additional activity was found at Na1.9, tested using the hNav1.9_C4 chimera, where Tf2 (1 µM) shifted the voltage dependence of activation by -6.3 mV. In an attempt to convert Tf2 into an Na1.3 inhibitor, we synthetized the analogue Tf2[S14R], a mutation previously described to remove the excitatory activity of related β-scorpion toxins. Indeed, Tf2[S14R](10 µM) had reduced excitatory activity at Na1.3, although it still caused a small -5.8 mV shift in the voltage dependence of activation. Intraplantar injection of Tf2 (1 µM) in mice caused spontaneous flinching and swelling, which was not reduced by the Na1.1/1.3 inhibitor ICA-121431 nor in Na1.9 mice, suggesting off-target activity. In addition, despite a loss of excitatory activity, intraplantar injection of Tf2[S14R](10 µM) still caused swelling, providing strong evidence that Tf2 has additional off-target activity at one or more non-neuronal targets. Therefore, due to activity at Na1.9 and other yet to be identified target(s), the use of Tf2 as a selective pharmacological probe may be limited.

Learn More >

Transplantation of Mesenchymal Stromal Cells Expressing the Human Preproenkephalin Gene Can Relieve Pain in a Rat Model of Neuropathic Pain.

Transgenic therapy for central neuralgia faces the problems of low expression and weak targeting and affects superficial but not deep neurons. In this study, we generated a lentivirus vector with human preproenkephalin gene (hPPE) expression driven by the transcriptional amplification strategy system (TAS) and established a primary bone marrow-derived mesenchymal stromal cell (BMSC) line stably expressing hPPE for transplantation into a rat model of neuropathic pain rat. The paw thermal withdrawal latency assay and paw mechanical withdrawal threshold assay showed that unlike control BMSCs and BMSCs with hPPE overexpression driven by the CMV or Synapsin 1 (SYN1) promoter, TAS-hPPE BMSCs had a robust and lasting analgesic effect. The TAS-hPPE BMSC-treated group exhibited higher expression of TAS-driven hPPE and a higher ratio of BMSCs in the midbrain, spinal cord and cortex then the CMV-hPPE BMSC- and SYN1-hPPE BMSC-treated groups. Moreover, we also observed that TAS-hPPE BMSCs displayed a greater tendency to differentiate into neurons and exhibit neuronal-like distribution than CMV-hPPE or SYN1-hPPE BMSCs. In conclusion, our study shows that the TAS improves BMSC transgenic therapy for neuropathic pain treatment.

Learn More >

Activation of Peripheral and Central Trigeminovascular Neurons by Seizure: Implications for Ictal and Postictal Headache.

An epileptic seizure can trigger a headache during (ictal) or after (postictal) the termination of the event. Little is known about the pathophysiology of seizure-induced headaches. In the current study, we determined whether a seizure can activate nociceptive pathways that carry pain signals from the meninges to the spinal cord, and if so, to what extent and through which classes of peripheral and central neurons. To achieve these goals, we used single-unit recording techniques and an established animal model of seizure (picrotoxin) to determine the effects of epileptic seizure on the activity of trigeminovascular Aδ-, C-, wide-dynamic range, and high-threshold neurons in male and female rats. Occurrence of seizure activated 54%, 50%, 68%, and 39% of the Aδ-, C-, wide-dynamic range, and high-threshold neurons, respectively. Regardless of their class, activated neurons exhibited a twofold to fourfold increase in their firing, which started immediately (1 min) or up to 90 min after seizure initiation, and lasted as short as 10 min or as long as 120 min. Administration of lidocaine to the dura prevented activation of all neuronal classes but not the initiation or maintenance of the seizure. These findings suggest that all neuronal classes may be involved in the initiation and maintenance of seizure-induced headache, and that their activation patterns can provide a neural substrate for explaining the timing and duration of ictal and possibly postictal headaches. By using seizure, which is evident in humans, this study bypasses controversies associated with cortical spreading depression, which is less readily observed in humans.This preclinical study provides a neural substrate for ictal and postictal headache. By studying seizure effects on the activity of peripheral (C and Aδ) and central (wide dynamic range and high-threshold) trigeminovascular neurons in intact and anesthetized dura, the findings help resolve two outstanding questions about the pathophysiology of headaches of intracranial origin. The first is that abnormal brain activity (i.e., seizure) that is evident in human (unlike cortical spreading depression) gives rise to specific and selective activation of the different components of the trigeminovascular system, and the second is that the activation of all components of the trigeminovascular pathway (i.e., peripheral and central neurons) depends on activation of the meningeal nociceptors from their receptors in the dura.

Learn More >

A modulator of the low-voltage activated T-type calcium channel that reverses HIV glycoprotein 120-, paclitaxel-, and spinal nerve ligation-induced peripheral neuropathies.

The voltage-gated calcium channels CaV3.1-3.3 constitute the T-type subfamily, whose dysfunctions are associated with epilepsy, psychiatric disorders, and chronic pain. The unique properties of low voltage-activation, faster inactivation, and slower deactivation of these channels support their role in modulation of cellular excitability and low-threshold firing. Thus, selective T-type calcium channel antagonists are highly sought after. Here, we explored Ugi-azide multicomponent reaction (MCR) products to identify compounds targeting T-type calcium channel. Of the 46 compounds tested, an analog of benzimidazolonepiperidine – 5bk (1-{1-[(R)-{1-[(1S)-1-phenylethyl]-1H-1,2,3,4-tetrazol-5-yl}(thiophen-3-yl)methyl]piperidin-4-yl}-2,3-dihydro-1H-1,3-benzodiazol-2-one) modulated depolarization-induced calcium influx in rat sensory neurons. Modulation of T-type calcium channels by 5bk was further confirmed in whole-cell patch clamp assays in dorsal root ganglion (DRG) neurons, where pharmacological isolation of T-type currents led to a time- and concentration-dependent regulation with a low micromolar IC50. Lack of an acute effect of 5bk argues against a direct action on of T-type channels. Genetic knockdown revealed CaV3.2 to be the isoform preferentially modulated by 5bk. High voltage-gated calcium, as well as tetrodotoxin-sensitive and -resistant sodium, channels were unaffected by 5bk. 5bk inhibited spontaneous excitatory post synaptic currents and depolarization-evoked release of calcitonin gene-related peptide (CGRP) from lumbar spinal cord slices. Notably, 5bk did not bind human mu, delta, or kappa opioid receptors. 5bk reversed mechanical allodynia in rat models of HIV-associated neuropathy, chemotherapy-induced peripheral neuropathy (CIPN), and spinal nerve ligation (SNL)-induced neuropathy, without effects on locomotion or anxiety. Thus, 5bk represents a novel T-type modulator that could be used to develop non-addictive pain therapeutics.

Learn More >

Repetitive stress in mice causes migraine-like behaviors and CGRP-dependent hyperalgesic priming to a migraine trigger.

Migraine is one of the most disabling disorders worldwide but the underlying mechanisms are poorly understood. Stress is consistently reported as a common trigger of migraine attacks. Here we show that repeated stress in mice causes migraine-like behaviors that are responsive to a migraine therapeutic. Adult female and male mice were exposed to 2 hours of restraint stress for 3 consecutive days, after which they demonstrated facial mechanical hypersensitivity and facial grimace responses that were resolved by 14 days post-stress. Hypersensitivity or grimace was not observed in either control animals or those stressed for only 1 day. Following return to baseline, the NO-donor sodium nitroprusside (SNP; 0.1 mg/kg) elicited mechanical hypersensitivity in stressed but not in control animals, demonstrating the presence of hyperalgesic priming. This suggests the presence of a migraine-like state, since NO-donors are reliable triggers of attacks in migraine patients but not controls. The stress paradigm also caused priming responses to dural pH 7.0 treatment. The presence of this primed state after stress is not permanent as it was no longer present at 35 days post-stress. Finally, mice received either the CGRP monoclonal antibody ALD405 (10 mg/kg) 24 hours prior to SNP or a co-injection of sumatriptan (0.6 mg/kg). ALD405, but not sumatriptan, blocked the facial hypersensitivity due to SNP. This stress paradigm in mice and the subsequent primed state caused by stress, allow further preclinical investigation of mechanisms contributing to migraine, particularly those caused by common triggers of attacks.

Learn More >

Search