I am a
Home I AM A Search Login

Animal Studies

Share this

Adult brain activation in response to pain is changed by neonatal painful stimulation according to sex: a manganese-enhanced MRI study.

Although it is known that nociceptive stimulation in the first postnatal week in rats is useful to model preterm pain, resulting in activation of specific brain areas, as assessed in vivo using manganese-enhanced magnetic resonance imaging (MEMRI), little is known about its long-term effects and sex specificity. Here we aimed to investigate whether inflammatory pain induced in male and female adult rats modify the pattern of brain activation between animals subjected or not to neonatal pain. For this, Complete Freund's adjuvant (CFA, was injected into the left hind paw of rat pups on postnatal day 1 (P1) or P8 to induce inflammatory response. During adulthood, CFA-treated and control animals were injected with CFA 1 hour prior MRI. MEMRI has the ability to enhance the contrast of selective brain structures in response to a specific stimulus, as the pain. MEMRI responses were consistent with activation of nociceptive pathways and these responses were reduced in animals treated with CFA on P1, but increased in animals treated on P8, mainly in the female group. In agreement, P8 female group showed exacerbated responses in the thermal nociceptive test. By using MEMRI we conclude that the natural ability of adult rats to recognize and react to pain exposition is modified by neonatal painful exposition, mainly among females.

Learn More >

N-Docosahexaenoyl ethanolamine (Synaptamide) has antinociceptive effects in male mice.

N-docosahexaenoyl ethanolamine (DHEA; also known as synaptamide) binds to both the CB1 and CB2 cannabinoid receptors and has anti-inflammatory properties in vitro. However, the in vivo effects of DHEA are unknown. Therefore, this study was designed to understand the effects of DHEA in models of pain and inflammation in mice.

Learn More >

TREK-1 channel activation as a new analgesic strategy devoid of opioid adverse effects.

Opioids are effective painkillers. However, their risk-benefit ratio is dampened by numerous adverse effects and opioid misuse has led to a public health crisis. Safer alternatives are required but isolating the antinociceptive effect of opioids from their adverse effects is a pharmacological challenge because activation of the mu opioid receptor triggers both the antinociceptive and adverse effects of opioids.

Learn More >

Dysregulation of EAAT2 and VGLUT2 spinal glutamate transports via histone deacetylase 2 (HDAC2) contributes to paclitaxel-induced painful neuropathy.

Effective treatments for chemotherapy-induced peripheral neuropathy (CIPN) remain unavailable. Given the significance of spinal cord glutamate transporters in neuronal plasticity and central sensitization, this study investigated the role of excitatory amino acid transporter 2 (EAAT2) and vesicular-glutamate transporter 2 (VGLUT2) in the development of paclitaxel-induced painful neuropathy. Paclitaxel (2 mg/kg, i.p., cumulative dose 8mg/kg) induced long-lasting mechanical allodynia (> 28days) with increased glutamate concentration and decreased EAAT2 expression with no changes in GABA/glycine or VGAT (vesicular GABA transporter) in rat spinal dorsal horn. VGLUT2 expression was upregulated and co-expressed with enhanced synaptophysin, characterizing nociceptive afferent sprouting and new synapse formation of glutamatergic neurons in the spinal cord dorsal horn. HDAC2 and transcription factor YY1 were also upregulated, and their interaction and co-localization were confirmed following paclitaxel treatment using co-immunoprecipitation (Co-IP). Inhibition or knockdown of HDAC2 expression by valproic acid (VPA), BRD6688 or HDAC2 siRNA (small interfering RNA) not only attenuated paclitaxel-induced mechanical allodynia but also suppressed HDAC2 upregulation, glutamate accumulation and the corresponding changes in EAAT2/VGLUT/synaptophysin expression and HDAC2/YY1 interaction. These findings indicate that loss of the balance between glutamate release and reuptake due to dysregulation EAAT2/VGLUT2/synaptophysin cascade in the spinal dorsal horn plays an important role in the development of paclitaxel-induced neuropathic pain. HDAC2/YY1 interaction as a complex appears essential in regulating this pathway, which can potentially be a therapeutic target to relieve CIPN by reversing central sensitization of spinal nociceptive neurons.

Learn More >

Differential glutamatergic and GABAergic contributions to the tetrad effects of Δ-tetrahydrocannabinol revealed by cell-type-specific reconstitution of the CB1 receptor.

Δ-tetrahydrocannabinol (THC), the major psychoactive ingredient of Cannabis sativa, exerts its actions through the endocannabinoid system by stimulation of the cannabinoid type 1 (CB1) receptor. The widespread distribution of this receptor in different neuronal cell types and the plethora of functions that is modulated by the endocannabinoid system explain the versatility of the effects of THC. However, the cell types involved in the different THC effects are still not fully known. Conditional CB1 receptor knock-out mice were previously used to identify CB1 receptor subpopulations that are "necessary" for the tetrad effects of a high dose of THC: hypothermia, hypolocomotion, catalepsy and analgesia. Here, we used mouse models for conditional CB1 receptor "rescue" in dorsal telencephalic glutamatergic and forebrain GABAergic neurons to determine which CB1 receptor subpopulations are "sufficient" for these tetrad effects. Glutamatergic CB1 receptor was not only necessary but also sufficient for THC-induced hypothermia and hypolocomotion. Analgesic and cataleptic effects of THC are largely independent of glutamatergic and GABAergic CB1 receptors, since no sufficiency was found, in agreement with the previously reported lack of necessity. We also revealed a novel aspect of GABAergic CB1 receptor signaling. In animals with CB1 receptors exclusively in forebrain GABAergic neurons, THC stimulated rather than reduced locomotion. This cell-type selective and hitherto unsuspected hyperlocomotive effect may be occluded in wild-types and conditional knockouts and only be exposed when CB1 signaling is absent in all other cell types, thus underlining the importance of investigating both necessary and sufficient functions to unequivocally unravel cell-type specific actions.

Learn More >

dmPFC-vlPAG projection neurons contribute to pain maintenance thresholds and anxiolytic behaviors.

The dorsal medial prefrontal cortex (dmPFC) has been recognized as a key cortical area for nociceptive modulation. However, the underlying neural pathway and the function of specific cell types remain largely unclear. Here, we showed that lesions of the dmPFC induced an algesic and anxious state. By using multiple tracing methods including rabies-based transsynaptic tracing method, an excitatory descending neural pathway from the dmPFC to the ventrolateral periaqueductal gray (vlPAG) was outlined. Specific activation of the dmPFC-vlPAG neural pathway by an optogenetic manipulation, produced analgesic and anxiolytic effects in a chronic pain mice model. Inhibitory neurons in the dmPFC were specifically activated by using a chemogenetic approach, which logically produced an algesic and anxious state under both normal and chronic pain conditions. Antagonists of GABAAR or mGluR1 were applied to the dmPFC, which produced analgesic and anxiolytic effects. In summary, the present results suggest that the dmPFC-vlPAG neural pathway might participate in the maintenance of pain thresholds and anxiolytic behaviors under normal conditions, while silencing or suppressing the dmPFC-vlPAG pathway might be involved in the initial stages and maintenance of chronic pain and the emergence of anxiety-like behaviors.

Learn More >

Transcranial Direct Current Stimulation (tDCS) Induces Analgesia in Rats with Neuropathic Pain and Alcohol Abstinence.

Neuromodulatory techniques have been studied to treat drug addiction or compulsive eating as well as different chronic pain conditions, such as neuropathic and inflammatory pain in the clinical and preclinical settings. In this study, we aimed to investigate the effect of transcranial direct current stimulation (tDCS) on the association of alcohol withdrawal with neuropathic pain based on nociceptive and neurochemical parameters in rats. Thirty-six adult male Wistar rats were randomized into five groups: control, neuropathic pain, neuropathic pain + tDCS, neuropathic pain + alcohol, and neuropathic pain + alcohol + tDCS. The neuropathic pain model was induced by chronic constriction injury (CCI) to the sciatic nerve. Rats were then exposed to alcohol (20%) by oral gavage administration for 15 days (beginning 24 h after CCI). tDCS was started on the 17th day after surgery and lasted for 8 consecutive days. The nociceptive test (hot plate) was performed at baseline, 16 days after CCI, and immediately and 24 h after the last session of tDCS. Rats were killed by decapitation, and structures were removed and frozen for biochemical analysis (nerve growth factor and interleukin (IL-1α, IL-1β, and IL-10 measurements). Neuropathy-induced thermal hyperalgesia was reversed by tDCS, an effect that was delayed by alcohol abstinence. In addition, tDCS treatment induced modulation of central levels of IL-1α, IL-1ß, and IL-10 and neurotrophic growth factor. We cannot rule out that the antinociceptive effect of tDCS could be related to increased central levels of IL-1α and IL-10. Therefore, tDCS may be a promising non-pharmacological therapeutic approach for chronic pain treatment.

Learn More >

Topical application of loperamide/oxymorphindole, mu and delta opioid receptor agonists, reduces sensitization of C-fiber nociceptors that possess Na1.8.

It was recently shown that local injection, systemic administration or topical application of the peripherally-restricted mu-opioid receptor (MOR) agonist loperamide (Lo) and the delta-opioid receptor (DOR) agonist oxymorphindole (OMI) synergized to produce highly potent anti-hyperalgesia that was dependent on both MOR and DOR located in the periphery. We assessed peripheral mechanisms by which this Lo/OMI combination produces analgesia in mice expressing the light-sensitive protein channelrhodopsin2 (ChR2) in neurons that express Na1.8 voltage-gated sodium channels. These mice (Na1.8-ChR2) enabled us to selectively target and record electrophysiological activity from these neurons (the majority of which are nociceptive) using blue light stimulation of the hind paw. We assessed the effect of Lo/OMI on nociceptor activity in both naïve mice and mice treated with complete Freund's adjuvant (CFA) to induce chronic inflammation of the hind paw. Teased fiber recording of tibial nerve fibers innervating the plantar hind paw revealed that the Lo/OMI combination reduced responses to light stimulation in naïve mice and attenuated spontaneous activity as well as responses to light and mechanical stimuli in CFA-treated mice. These results show that Lo/OMI reduces activity of C-fiber nociceptors that express Na1.8 and corroborate recent behavioral studies demonstrating the potent analgesic effects of this drug combination. Because of its peripheral site of action, Lo/OMI might produce effective analgesia without the side effects associated with activation of opioid receptors in the central nervous system.

Learn More >

Contribution of T-type calcium channels to spinal cord injury induced hyperexcitability of nociceptors.

A hyperexcitable state and spontaneous activity of nociceptors have been suggested to play a critical role in the development of chronic neuropathic pain following spinal cord injury (SCI). In male rats, we employed the action potential clamp technique to determine the underlying ionic mechanisms responsible for driving SCI-nociceptors to a hyperexcitable state and for triggering their spontaneous activity. We found that the increased activity of low voltage activated T-type calcium channels induced by the injury sustains the bulk (∼60-70%) of the inward current active at subthreshold voltages during the interspike interval in SCI-nociceptors, with a modest contribution (∼10-15%) from tetrodotoxin (TTX)-sensitive and TTX-resistant sodium channels and HCN channels. In current clamp recordings, inhibition of T-type calcium channels with 1 μM TTA-P2 reduced both the spontaneous and the evoked firing in response to current injections in SCI-nociceptors to a level similar to sham-nociceptors. Electrophysiology was then combined with the conditioned place preference (CPP) paradigm to determine the relationship between the increased activity of T-type channels in SCI-nociceptors and chronic neuropathic pain following SCI. The size of the interspike T-type calcium current recorded from nociceptors isolated from SCI rats showing TTA-P2-induced CPP (responders) was ∼6 fold greater than the interspike T-type calcium current recorded from nociceptors isolated from SCI rats without TTA-P2-induced CPP (non-responders). Taken together, our data suggest that the increased activity of T-type calcium channels induced by the injury plays a primary role in driving SCI-nociceptors to a hyperexcitable state and contributes to chronic neuropathic pain following SCI.Chronic neuropathic pain is a major comorbidity of SCI, affecting up to 70-80% of patients. Anticonvulsant and tricyclic antidepressant drugs are first line analgesics used to treat SCI-induced neuropathic pain, but their efficacy is very limited. A hyperexcitable state and spontaneous activity of SCI-nociceptors have been proposed as a possible underlying cause for the development of chronic neuropathic pain following SCI. Here we show that the increased activity of T-type calcium channels induced by the injury plays a major role in driving SCI-nociceptors to a hyperexcitable state and for promoting their spontaneous activity, suggesting that T-type calcium channels may represent a pharmacological target to treat SCI-induced neuropathic pain.

Learn More >

Role of Rho-associated coiled-coil containing protein kinase in the spinal cord injury induced neuropathic pain.

Spinal cord injury (SCI) can lead to increased phosphorylation of p38 in spinal cord microglia. This is one of the main causes for the development of persistent pain. Recently, we reported our study on the activation of p38 mitogen-activated protein kinases (MAPK) in spinal microglia, which has been considered the key molecule for the onset and maintenance of neuropathic pain after peripheral nerve injury, using a rat model. We also reported that the RhoA/Rho-associated coiled-coil containing protein kinase (ROCK) pathway mediates p38 activation in spinal microglia in peripheral nerve injury. But the precise mechanisms of neuropathic pain induced by SCI are still unclear.

Learn More >

Search