I am a
Home I AM A Search Login

Animal Studies

Share this

An NTS-CeA projection modulates depression-like behaviors in a mouse model of chronic pain.

Depressive symptoms comorbid with chronic pain are a common health problem, but the underlying neural circuit mechanisms remain elusive. Here, we identify a glutamatergic projection from the nucleus of the solitary tract (NTS) to the central nucleus of the amygdala (CeA) that mediates depression-like behaviors in a chemotherapy-induced neuropathic pain model. Inhibition or ablation of the glutamatergic NTS neurons alleviates depressive but not hypersensitive behaviors in these mice. The projected neurons form excitatory synapses with somatostatin-expressing neurons in the CeA. Silencing the NTS-CeA projection alleviates depressive but not hypersensitive behaviors, whereas activating the proection promotes depressive behaviors. In addition, in naïve mice, activation of the NTS-CeA projection induces obvious depressive behaviors that can be blocked by silencing the CeA somatostatin-expressing neurons. Together, we reveal a modulatory role of the NTS and its glutamatergic projection to the CeA circuit in modulating depression-like behaviors comorbid to chronic pain.

Learn More >

SAFit2 reduces neuroinflammation and ameliorates nerve injury-induced neuropathic pain.

Neuropathic pain is experienced worldwide by patients suffering from nerve injuries, infectious or metabolic diseases or chemotherapy. However, the treatment options are still limited because of low efficacy and sometimes severe side effects. Recently, the deficiency of FKBP51 was shown to relieve chronic pain, revealing FKBP51 as a potential therapeutic target. However, a specific and potent FKBP51 inhibitor was not available until recently which hampered targeting of FKBP51.

Learn More >

Corticotropin-releasing factor is involved in acute stress-induced analgesia and antipruritus.

Under the condition of stress, the hypothalamic-pituitary-adrenal axis (HPA axis) is activated and causes the secretion of corticotropin-releasing factor (CRF). Previous studies have demonstrated that CRF is involved in the regulation of pain and itch. Thus, it remains worthy to explore whether the desensitization of pain and itch under high-intensity acute stress (such as high fear and tension) is related to the sharp increase of CRF.

Learn More >

Synergic Effect of Early Administration of Probiotics and Adipose-Derived Mesenchymal Stem Cells on Alleviating Inflammation-Induced Chronic Neuropathic Pain in Rodents.

This study investigated the hypothesis that probiotics enhanced the therapeutic effect of adipose-derived mesenchymal stem cells (ADMSCs) on alleviating neuropathic pain (NP) due to chronic constriction injury (CCI) mainly through regulating the microbiota in rats. SD rats (n = 50) were categorized into group 1 (sham-control), group 2 (NP), group 3 (NP + probiotics (i.e., 1.5 billion C.F.U./day/rat, orally 3 h after NP procedure, followed by QOD 30 times)), group 4 (NP + ADMSCs (3.0 × 10 cells) 3 h after CCI procedure, followed by QOD six times (i.e., seven times in total, i.e., mimic a clinical setting of drug use) and group 5 (NP + probiotics + ADMSCs (3.0 × 10 cells)) and euthanized by day 60 after NP induction. By day 28 after NP induction, flow-cytometric analysis showed circulating levels of early (AN-V/PI) and late (AN-V/PI) apoptotic, and three inflammatory (CD11b-c+, Ly6G+ and MPO+) cells were lowest in group 1 and significantly progressively reduced in groups 2 to 5 (all < 0.0001). By days 7, 14, 21, 28, and 60 after CCI, the thresholds of thermal paw withdrawal latency (PWL) and mechanical paw withdrawal threshold (PWT) were highest in group 1 and significantly progressively increased in groups 2 to 5 (all < 0.0001). Numbers of pain-connived cells (Nav1.8+/peripherin+, p-ERK+/peripherin+, p-p38+/peripherin+ and p-p38+/NF200+) and protein expressions of inflammatory (p-NF-κB, IL-1ß, TNF-α and MMP-9), apoptotic (cleaved-caspase-3, cleaved-PARP), oxidative-stress (NOX-1, NOX-2), DNA-damaged (γ-H2AX) and MAPK-family (p-P38, p-JNK, p-ERK1/2) biomarkers as well as the protein levels of Nav.1.3, Nav.1.8, and Nav.1.9 in L4-L5 in dorsal root ganglia displayed an opposite pattern of mechanical PWT among the groups (all < 0.0001). In conclusion, combined probiotic and ADMSC therapy was superior to merely one for alleviating CCI-induced NP mainly through suppressing inflammation and oxidative stress.

Learn More >

Partial Sciatic Nerve Ligation: A Mouse Model of Chronic Neuropathic Pain to Study the Antinociceptive Effect of Novel Therapies.

Management of chronic pain remains challenging to this day, and current treatments are associated with adverse effects, including tolerance and addiction. Chronic neuropathic pain results from lesions or diseases in the somatosensory system. To investigate potential therapies with reduced side effects, animal pain models are the gold standard in preclinical studies. Therefore, well-characterized and well-described models are crucial for the development and validation of innovative therapies. Partial ligation of the sciatic nerve (pSNL) is a procedure that induces chronic neuropathic pain in mice, characterized by mechanical and thermal hypersensitivity, ongoing pain, and changes in limb temperature, making this model a great fit to study neuropathic pain preclinically. pSNL is an advantageous model to study neuropathic pain as it reproduces many symptoms observed in humans with neuropathic pain. Furthermore, the surgical procedure is relatively fast and straightforward to perform. Unilateral pSNL of one limb allows for comparison between the ipsilateral and contralateral paws, as well as evaluation of central sensitization. To induce chronic neuropathic hypersensitivity, a 9-0 non-absorbable nylon thread is used to ligate the dorsal third of the sciatic nerve. This article describes the surgical procedure and characterizes the development of chronic neuropathic pain through multiple commonly used behavioral tests. As a plethora of innovative therapies are now being investigated to treat chronic pain, this article provides crucial concepts for standardization and an accurate description of surgeries required to induce neuropathic pain.

Learn More >

Analgesic Effectiveness and Dorsal Root Ganglia Protein Modulation of a Peripheral Adenosine Monophosphate Kinase Alpha Activator (O304) Following Lumbar Disk Puncture in the Mouse.

Disk herniation is a primary cause of radicular back pain. The purpose of this study was to evaluate the antiallodynic effective dose in 50% of the sample (ED50) and dorsal root ganglion (DRG) protein modulation of a peripheral direct adenosine monophosphate kinase alpha (AMPKα) activator (O304) in a murine model of lumbar disk puncture.

Learn More >

Drosophila mechanical nociceptors preferentially sense localized poking.

Mechanical nociception is an evolutionarily conserved sensory process required for the survival of living organisms. Previous studies have revealed much about the neural circuits and sensory molecules in mechanical nociception, but the cellular mechanisms adopted by nociceptors in force detection remain elusive. To address this issue, we study the mechanosensation of a fly larval nociceptor (class IV da neurons, c4da) using a customized mechanical device. We find that c4da are sensitive to mN-scale forces and make uniform responses to the forces applied at different dendritic regions. Moreover, c4da showed a greater sensitivity to localized forces, consistent with them being able to detect the poking of sharp objects, such as wasp ovipositor. Further analysis reveals that high morphological complexity, mechanosensitivity to lateral tension and possibly also active signal propagation in dendrites contribute to the sensory features of c4da. In particular, we discover that Piezo and Ppk1/Ppk26, two key mechanosensory molecules, make differential but additive contributions to the mechanosensitivity of c4da. In all, our results provide updates into understanding how c4da process mechanical signals at the cellular level and reveal the contributions of key molecules.

Learn More >

Ropivacaine-induced seizures evoked pain sensitization in rats: Participation of 5-HT/5-HT3R.

Due to the increasing use of local anesthetic techniques in various healthcare settings, local anesthetic toxicity still occurs. Seizures are the most common symptom of local anesthetic toxicity. The relationship between local anesthetic-induced seizures and the sensation of pain has not been established till now. Here, we assessed the development of pain hypersensitivity after ropivacaine-induced seizures (RIS) and the influence of RIS on incision-induced postsurgical pain and formalin-induced acute inflammatory pain. In addition, the involvement of spinal 5-HT/5-HTR in RIS-induced pain sensitization was investigated. According to a sequential exploratory experimental strategy, we first calculated the 50% seizure dosage of ropivacaine to be 42.66mg/kg (95% confidence interval: 40.19-45.28mg/kg). We showed that RIS induced significant bilateral mechanical pain hypersensitivity that lasted around 5 days, accompanied by an increase in spinal 5-HT. Moreover, RIS considerably protracted postsurgical pain and enhanced formalin-induced spontaneous flinching in the second phase. Depletion of spinal 5-HT with intrathecal injection of 5,7-dihydroxytryptamine (5,7-DHT) reduced RIS-induced pain hypersensitivity and prevented the prolonging of postsurgical pain following RIS. Likewise, blocking spinal 5-HT3R by intrathecal administration of ondansetron reversed RIS-induced pain hypersensitivity and attenuated the pronociception of RIS in the formalin test. Our findings revealed that acute RIS led to pain hypersensitivity and had pronociceptive effects on incision-induced postsurgical pain and formalin-induced acute inflammatory pain. Moreover, our data implied that RIS-induced pain sensitization depends on spinal 5-HT/5-HTR signaling. Thus, targeting the descending serotonergic facilitation system should be an important element of the precise treatment for local anesthetic toxicity.

Learn More >

Development of opioid-induced hyperalgesia depends on reactive astrocytes controlled by Wnt5a signaling.

Opioids are the frontline analgesics for managing various types of pain. Paradoxically, repeated use of opioid analgesics may cause an exacerbated pain state known as opioid-induced hyperalgesia (OIH), which significantly contributes to dose escalation and consequently opioid overdose. Neuronal malplasticity in pain circuits has been the predominant proposed mechanism of OIH expression. Although glial cells are known to become reactive in OIH animal models, their biological contribution to OIH remains to be defined and their activation mechanism remains to be elucidated. Here, we show that reactive astrocytes (a.k.a. astrogliosis) are critical for OIH development in both male and female mice. Genetic reduction of astrogliosis inhibited the expression of OIH and morphine-induced neural circuit polarization (NCP) in the spinal dorsal horn (SDH). We found that Wnt5a is a neuron-to-astrocyte signal that is required for morphine-induced astrogliosis. Conditional knock-out of Wnt5a in neurons or its co-receptor ROR2 in astrocytes blocked not only morphine-induced astrogliosis but also OIH and NCP. Furthermore, we showed that the Wnt5a-ROR2 signaling-dependent astrogliosis contributes to OIH via inflammasome-regulated IL-1β. Our results reveal an important role of morphine-induced astrogliosis in OIH pathogenesis and elucidate a neuron-to-astrocyte intercellular Wnt signaling pathway that controls the astrogliosis.

Learn More >

Response Profile in a Rat Model of Exercise-Induced Hypoalgesia is Associated with Duloxetine, Pregabalin and Diclofenac effect on Constriction Induced Neuropathy.

Exercise is a known trigger of the inhibitory pain modulation system and its analgesic effect is termed Exercise-Induced Hypoalgesia (EIH). Previous studies have demonstrated that rats with deficient analgesic response following exercise develop more significant hypersensitivity following nerve injury compared to rats with substantial analgesic response following exercise.

Learn More >

Search