I am a
Home I AM A Search Login

Animal Studies

Share this

TIAM1-mediated synaptic plasticity underlies comorbid depression-like and ketamine antidepressant-like actions in chronic pain.

Chronic pain often leads to depression, increasing patient suffering and worsening prognosis. While hyperactivity of the anterior cingulate cortex (ACC) appears to be critically involved, the molecular mechanisms underlying comorbid depressive symptoms in chronic pain remain elusive. T cell lymphoma invasion and metastasis 1 (Tiam1) is a Rac1 guanine nucleotide exchange factor (GEF) that promotes dendrite, spine, and synapse development during brain development. Here, we show that Tiam1 orchestrates synaptic structural and functional plasticity in ACC neurons via actin cytoskeleton reorganization and synaptic N-methyl-d-aspartate receptor (NMDAR) stabilization. This Tiam1-coordinated synaptic plasticity underpins ACC hyperactivity and drives chronic pain-induced depressive-like behaviors. Notably, administration of low-dose ketamine, an NMDAR antagonist emerging as a promising treatment for chronic pain and depression, induces sustained antidepressant-like effects in mouse models of chronic pain by blocking Tiam1-mediated maladaptive synaptic plasticity in ACC neurons. Our results reveal Tiam1 as a critical factor in the pathophysiology of chronic pain-induced depressive-like behaviors and the sustained antidepressant-like effects of ketamine.

Learn More >

A nigro-subthalamo-parabrachial pathway modulates pain-like behaviors.

The basal ganglia including the subthalamic nucleus (STN) and substantia nigra pars reticulata (SNr) are involved in pain-related responses, but how they regulate pain processing remains unknown. Here, we identify a pathway, consisting of GABAergic neurons in the SNr (SNr) and glutamatergic neurons in the STN (STN) and the lateral parabrachial nucleus (LPB), that modulates acute and persistent pain states in both male and female mice. The activity of STN neurons was enhanced in acute and persistent pain states. This enhancement was accompanied by hypoactivity in SNr neurons and strengthening of the STN-LPB glutamatergic projection. Reversing the dysfunction in the SNr-STN-LPB pathway attenuated activity of LPB neurons and mitigated pain-like behaviors. Therefore, the SNr-STN-LPB pathway regulates pathological pain and is a potential target for pain management.

Learn More >

A nociceptive neuronal ensemble in the dorsomedial prefrontal cortex underlies pain chronicity.

Pain chronicity involves unpleasant experience in both somatosensory and affective aspects, accompanied with the prefrontal cortex (PFC) neuroplastic alterations. However, whether specific PFC neuronal ensembles underlie pain chronicity remains elusive. Here we identify a nociceptive neuronal ensemble in the dorsomedial prefrontal cortex (dmPFC), which shows prominent reactivity to nociceptive stimuli. We observed that this ensemble shows distinct molecular characteristics and is densely connected to pain-related regions including basolateral amygdala (BLA) and lateral parabrachial nuclei (LPB). Prolonged chemogenetic activation of this nociceptive neuronal ensemble, but not a randomly transfected subset of dmPFC neurons, induces chronic pain-like behaviors in normal mice. By contrast, silencing the nociceptive dmPFC neurons relieves both pain hypersensitivity and anxiety in mice with chronic inflammatory pain. These results suggest the presence of specific dmPFC neuronal ensembles in processing nociceptive information and regulating pain chronicity.

Learn More >

DECREASED DEFAULT MODE NETWORK CONNECTIVITY FOLLOWING 24 HOURS OF CAPSAICIN-INDUCED PAIN PERSISTS DURING IMMEDIATE PAIN RELIEF AND FACILITATION.

Prolonged experimental pain can help assess cortical mechanisms underlying the transition from acute to chronic pain such as resting-state functional connectivity (rsFC), especially in early stages. This crossover study determined the effects of 24-hour-capsaicin-induced pain on the default mode network rsFC, a major network in the dynamic pain connectome. Electroencephalographic rsFC measured by Granger causality was acquired from 24 healthy volunteers (12 women) at baseline, 1hour, and 24hours following a control or capsaicin patch on the right forearm. The control patch was received maximum one week before the capsaicin patch. Following 24hours, the patch was cooled and later heated to assess rsFC changes in response to pain relief and facilitation, respectively. Compared to baseline, decreased rsFC at alpha oscillations (8-10Hz) was found following 1hour and 24hours of capsaicin application for connections projecting from medial prefrontal cortex (mPFC) and right angular gyrus (rAG) but not left angular gyrus (lAG) or posterior cingulate cortex (PCC): mPFC-PCC (1hour:P<0.001, 24hours_P=0.002), mPFC-rAG (1hour:P<0.001, 24hours_P=0.001), rAG-mPFC (1hour:P<0.001, 24hours_P=0.001), rAG-PCC (1hour:P<0.001, 24hours_P=0.004). Comparable decreased rsFC following 1hour and 24hours (P≤0.008) was found at beta oscillations, however, decreased projections from PCC were also found: PCC-rAG (P≤0.005) and PCC-lAG (P≤0.006). Pain NRS scores following 24hours (3.7±0.4) was reduced by cooling (0.3±0.1, P=0.004) and increased by heating (4.8±0.6, P=0.016). However, neither cooling nor heating altered rsFC. This study shows that 24hours of experimental pain induces a robust decrease in DMN connectivity that persists during pain relief or facilitation suggesting a possible shift to attentional and emotional processing in persistent pain. Perspective: This article shows decreased DMN connectivity that might reflect possible attentional and emotional changes during acute and prolonged pain. Understanding these changes could potentially help clinicians in developing therapeutic methods that can better target these attentional and emotional processes before developing into more persistent states.

Learn More >

Bestrophin-1 participates in neuropathic pain induced by spinal nerve transection but not spinal nerve ligation.

Previous studies have reported that L5/L6 spinal nerve ligation (SNL), but not L5 spinal nerve transection (SNT), enhances anoctamin-1 in injured and uninjured dorsal root ganglia (DRG) of rats suggesting some differences in function of the type of nerve injury. The role of bestrophin-1 in these conditions is unknown. The aim of this study was to investigate the role of bestrophin-1 in rats subjected to L5 spinal nerve transection (SNT) and L5/L6 spinal nerve ligation (SNL). SNT up-regulated bestrophin-1 protein expression in injured L5 and uninjured L4 DRG at day 7, whereas it enhanced GAP43 mainly in injured, but also in uninjured DRG. In contrast, SNL enhanced GAP43 at day 1 and 7, while bestrophin-1 expression increased only at day 1 after nerve injury. Accordingly, intrathecal injection of the bestrophin-1 blocker CaCC (1-10 µg) reverted SNT- or SNL-induced tactile allodynia in a concentration-dependent manner. Intrathecal injection of CaCC (10 µg) prevented SNT-induced upregulation of bestrophin-1 and GAP43 at day 7. In contrast, CaCC did not affect SNL-induced up-regulation of GAP43 nor bestrophin-1. Bestrophin-1 was mainly expressed in small- and medium-size neurons in naïve rats, while SNT increased bestrophin-1 immunoreactivity in CGRP+, but not in IB4+ neuronal cells in DRG. Intrathecal injection of bestrophin-1 plasmid (pCMVBest) induced tactile allodynia and increased bestrophin-1 expression in DRG and spinal cord in naïve rats. CaCC reversed bestrophin-1 overexpression-induced tactile allodynia and restored bestrophin-1 expression. Our data suggest that bestrophin-1 plays a relevant role in neuropathic pain induced by SNT, but not by SNL. Perspective: SNT, but not SNL, up-regulates bestrophin-1 and GAP43 protein expression in injured L5 and uninjured L4 DRG. Moreover, SNT increases bestrophin-1 immunoreactivity in CGRP+ neurons in DRG, while bestrophin-1 overexpression induces allodynia. CaCC reduces allodynia and restores bestrophin-1 expression induced by bestrophin-1 transfection. Our data suggest that spinal bestrophin-1 in DRG is differentially regulated depending on the neuropathic pain model.

Learn More >

Disruption of C/EBPβ-Clec7a axis exacerbates neuroinflammatory injury via NLRP3 inflammasome-mediated pyroptosis in experimental neuropathic pain.

Growing evidence shows that C-Type Lectin Domain Containing 7A (Clec7a) may be involved into neuroinflammatory injury of various neurological diseases. However, its roles in neuropathic pain remain unclear.

Learn More >

Electroacupuncture ameliorates knee osteoarthritis in rats via inhibiting NLRP3 inflammasome and reducing pyroptosis.

Knee Osteoarthritis (KOA), is the most common joint disease worldwide. The pathogenesis of KOA is complex and electroacupuncture (EA) is an effective therapy for KOA, but the mechanism remains unclear. In this study, we aim to investigate the potential therapeutic effect of EA on the rat model of KOA induced by monosodium iodoacetate (MIA) and its relationship with NLRP3 inflammasome by immunohistochemistry and western blot.

Learn More >

Soluble epoxide hydrolase inhibition enhances Specialized Pro-resolving Lipid Mediator production and promotes macrophage plasticity.

Epoxyeicosatrienoic acids (EETs) and other epoxy fatty acids (EpFA) are lipid mediators that are rapidly inactivated by soluble epoxide hydrolase. Uncontrolled and chronic inflammatory disorders fail to sufficiently activate endogenous regulatory pathways, including the production of specialized pro-resolving mediators (SPMs). Here, we addressed the relationship between SPMs and the EET/sEH axis and explored the impact of sEH inhibition on resolving macrophage phenotype.

Learn More >

Huc-MSCs-derived exosomes attenuate neuropathic pain by inhibiting activation of the TLR2/MyD88/NF-κB signaling pathway in the spinal microglia by targeting Rsad2.

Mesenchymal stem cells (MSCs)-derived exosomes have shown promise as a cell-free therapeutic strategy for neuropathic pain. This study was conducted to explore the potential mechanisms underlying the analgesic effects of MSC-derived exosomes in treating neuropathic pain.

Learn More >

Extracellular vesicles from IFN-γ-primed mesenchymal stem cells repress atopic dermatitis in mice.

Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterized by immune dysregulation, pruritus, and abnormal epidermal barrier function. Compared with conventional mesenchymal stem cell (MSC), induced pluripotent stem cell (iPSC)-derived mesenchymal stem cell (iMSC) is recognized as a unique source for producing extracellular vesicles (EVs) because it can be obtained in a scalable manner with an enhanced homogeneity. Stimulation of iMSCs with inflammatory cytokines can improve the immune-regulatory, anti-inflammatory, and tissue-repairing potential of iMSC-derived EVs.

Learn More >

Search