I am a
Home I AM A Search Login

Accepted

Share this

Brain Structural and Functional Imaging Findings in Medication-Overuse Headache.

This chapter overviews research neuroimaging findings of patients with medication-overuse headache (MOH). Results indicate; (i) correlations between neuropathology and medication-overuse; (ii) changes in brain morphology and cortical function; and (iii) brain recovery subsequent to withdrawal of medication that was overused. Results of this narrative review indicate exacerbated brain structural and functional changes in regions of the pain-matrix and in regions of the mesocortical-limbic circuit in patients with MOH compared to patients with migraine or compared to healthy controls. Modification of brain morphology as well as an association between brain recovery and medication withdrawal suggest that the MOH disease process involves state (brain modification) and trait-like (brain adaptation and recovery) neuromechanisms.

Learn More >

Novel Neuropathic Pain Mechanisms Associated With Allergic Inflammation.

Allergic diseases are associated with central and peripheral nervous system diseases such as autism spectrum disorders and eosinophilic granulomatosis with polyangiitis, which frequently causes mononeuritis multiplex. Thus, it is possible that patients with an atopic constitution might develop multifocal inflammation in central and peripheral nervous system tissues. In a previous study in Japan, we reported a rare form of myelitis with persistent neuropathic pain (NeP) in patients with allergic disorders. However, the underlying mechanism of allergic inflammation-related NeP remains to be elucidated. First, we analyzed the effect of allergic inflammation on the nociceptive system in the spinal cord. Mice with atopy showed microglial and astroglial activation in the spinal cord and tactile allodynia. In a microarray analysis of isolated microglia from the spinal cord, endothelin receptor type B (EDNRB) was the most upregulated cell surface receptor in mice with atopy. Immunohistochemical analysis demonstrated EDNRB expression was upregulated in microglia and astroglia. The EDNRB antagonist BQ788 abolished glial activation and allodynia. These findings indicated that allergic inflammation induced widespread glial activation through the EDNRB pathway and NeP. Second, we investigated whether autoantibody-mediated pathogenesis underlies allergic inflammation-related NeP. We detected specific autoantibodies to small dorsal root ganglion (DRG) neurons and their nerve terminals in the dorsal horns of NeP patients with allergic disorders. An analysis of IgG subclasses revealed a predominance of IgG2. These autoantibodies were mostly colocalized with isolectin B4- and P2X3-positive unmyelinated C-fiber type small DRG neurons. By contrast, immunostaining for S100β, a myelinated DRG neuron marker, showed no colocalization with patient IgG. Immunoprecipitation and liquid chromatography-tandem mass spectrometry identified plexin D1 as a target autoantigen. Patients with anti-plexin D1 antibodies often present with burning pain and thermal hyperalgesia. Immunotherapies, including plasma exchange, are effective for NeP management. Therefore, anti-plexin D1 antibodies may be pathogenic for immune-mediated NeP, especially under allergic inflammation conditions. Thus, allergic inflammation may induce NeP through glial inflammation in the spinal cord and the anti-plexin D1 antibody-mediated impairment of small DRG neurons.

Learn More >

Music Reduces Pain Unpleasantness: Evidence from an EEG Study.

Music is sometimes used as an adjunct to pain management. However, there is limited understanding of by what means music modulates pain perception and how the brain responds to nociceptive inputs while listening to music, because clinical practice typically involves the coexistence of multiple therapeutic interventions. To address this challenge, laboratory studies with experimental and control conditions are needed.

Learn More >

Analgesic use among the Brazilian population: Results from the National Survey on Access, Use and Promotion of Rational Use of Medicines (PNAUM).

To estimate the prevalence of use of analgesics in Brazil; and to characterize this use, according to sociodemographic and health-related characteristics.

Learn More >

Chronic pain syndromes: overlapping phenotypes with common mechanisms.

The common chronic pain syndromes of fibromyalgia, regional pain syndrome, and complex regional pain syndrome have been made to appear separate because they have been historically described by different groups and with different criteria, but they are really phenotypically accented expressions of the same processes triggered by emotional distress and filtered or modified by genetics, psychology, and local physical factors.

Learn More >

Transcription factor Sp4 is required for hyperalgesic state persistence.

Understanding how painful hypersensitive states develop and persist beyond the initial hours to days is critically important in the effort to devise strategies to prevent and/or reverse chronic painful states. Changes in nociceptor transcription can alter the abundance of nociceptive signaling elements, resulting in longer-term change in nociceptor phenotype. As a result, sensitized nociceptive signaling can be further amplified and nocifensive behaviors sustained for weeks to months. Building on our previous finding that transcription factor Sp4 positively regulates the expression of the pain transducing channel TRPV1 in Dorsal Root Ganglion (DRG) neurons, we sought to determine if Sp4 serves a broader role in the development and persistence of hypersensitive states in mice. We observed that more than 90% of Sp4 staining DRG neurons were small to medium sized, primarily unmyelinated (NF200 neg) and the majority co-expressed nociceptor markers TRPV1 and/or isolectin B4 (IB4). Genetically modified mice (Sp4+/-) with a 50% reduction of Sp4 showed a reduction in DRG TRPV1 mRNA and neuronal responses to the TRPV1 agonist-capsaicin. Importantly, Sp4+/- mice failed to develop persistent inflammatory thermal hyperalgesia, showing a reversal to control values after 6 hours. Despite a reversal of inflammatory thermal hyperalgesia, there was no difference in CFA-induced hindpaw swelling between CFA Sp4+/- and CFA wild type mice. Similarly, Sp4+/- mice failed to develop persistent mechanical hypersensitivity to hind-paw injection of NGF. Although Sp4+/- mice developed hypersensitivity to traumatic nerve injury, Sp4+/- mice failed to develop persistent cold or mechanical hypersensitivity to the platinum-based chemotherapeutic agent oxaliplatin, a non-traumatic model of neuropathic pain. Overall, Sp4+/- mice displayed a remarkable ability to reverse the development of multiple models of persistent inflammatory and neuropathic hypersensitivity. This suggests that Sp4 functions as a critical control point for a network of genes that conspire in the persistence of painful hypersensitive states.

Learn More >

Pain experiences and intrapersonal change among patients with chronic non-cancer pain after using a pain diary: a mixed-methods study.

Pain diaries are a valuable self-assessment tool; however, their use in chronic non-cancer pain has received limited attention. In this study, we examined the effect of pain diary use on pain intensity, interference, and intrapersonal change in patients with chronic non-cancer pain.

Learn More >

How Does Self-Efficacy Influence Pain Perception, Postural Stability and Range of Motion in Individuals with Chronic Low Back Pain?

Low back pain (LBP) is the most prevalent musculoskeletal problem among adults. Individuals with chronic LBP (CLBP) can present a psychological disorder and a lack of pain self-efficacy.

Learn More >

Analgesic effects of calcitonin on radicular pain in male rats.

Radicular pain is a frequently observed symptom of lumbar disk herniation or lumbar spinal canal stenosis. Achieving radicular pain relief is difficult. This type of pain may progress to chronic neuropathic pain. Calcitonin (elcatonin [eCT]) has been used mainly for hypercalcemia and pain associated with osteoporosis. The purpose of this study was to investigate analgesic effects of repeated eCT administration on radicular pain in male rats and changes in mRNA-expression levels of voltage-dependent sodium channels in the dorsal root ganglion (DRG).

Learn More >

A wireless closed-loop system for optogenetic peripheral neuromodulation.

The fast-growing field of bioelectronic medicine aims to develop engineered systems that can relieve clinical conditions by stimulating the peripheral nervous system. This type of technology relies largely on electrical stimulation to provide neuromodulation of organ function or pain. One example is sacral nerve stimulation to treat overactive bladder, urinary incontinence and interstitial cystitis (also known as bladder pain syndrome). Conventional, continuous stimulation protocols, however, can cause discomfort and pain, particularly when treating symptoms that can be intermittent (for example, sudden urinary urgency). Direct physical coupling of electrodes to the nerve can lead to injury and inflammation. Furthermore, typical therapeutic stimulators target large nerve bundles that innervate multiple structures, resulting in a lack of organ specificity. Here we introduce a miniaturized bio-optoelectronic implant that avoids these limitations by using (1) an optical stimulation interface that exploits microscale inorganic light-emitting diodes to activate opsins; (2) a soft, high-precision biophysical sensor system that allows continuous measurements of organ function; and (3) a control module and data analytics approach that enables coordinated, closed-loop operation of the system to eliminate pathological behaviours as they occur in real-time. In the example reported here, a soft strain gauge yields real-time information on bladder function in a rat model. Data algorithms identify pathological behaviour, and automated, closed-loop optogenetic neuromodulation of bladder sensory afferents normalizes bladder function. This all-optical scheme for neuromodulation offers chronic stability and the potential to stimulate specific cell types.

Learn More >

Search