I am a
Home I AM A Search Login

Accepted

Share this

Modulating pain thresholds through classical conditioning.

Classical conditioning has frequently been shown to be capable of evoking fear of pain and avoidance behavior in the context of chronic pain. However, whether pain itself can be conditioned has rarely been investigated and remains a matter of debate. Therefore, the present study investigated whether pain threshold ratings can be modified by the presence of conditioned non-nociceptive sensory stimuli in healthy participant.

Learn More >

Quantitative Sensory Testing (QST) in Drug-Naïve Patients with Parkinson’s Disease.

Pain is highly prevalent in patients with Parkinson's disease (PD), but underlying pathophysiological mechanisms are largely unclear. Alterations in somatosensory processing might contribute to sensory abnormalities in PD.

Learn More >

Characterization of novel lnc RNAs in the spinal cord of rats with lumbar disc herniation.

Radicular pain, caused by a lesion or autologous nucleus pulposus (NP) implantation, is associated with alteration in gene expression of the pain-signaling pathways. lncRNAs have been shown to play critical roles in neuropathic pain. However, the mechanistic function of lncRNAs in lumbar disc herniation (LDH) remains largely unknown. Identifying different lncRNA expression under sham and NP-implantation conditions in the spinal cord is important for understanding the molecular mechanisms of radicular pain.

Learn More >

Contribution of GABAergic modulation in DRGs to electroacupuncture analgesia in incisional neck pain rats.

Acupuncture therapy is effective for relieving postoperative pain. Our previous study showed that electroacupuncture (EA) at Futu (LI18) and Hegu (LI4)-Neiguan (PC6) could alleviate incisional neck pain, which was related with its effect in upregulating γ-aminobutyric acid (GABA) expression in cervical (C3-6) dorsal root ganglions (DRGs); but whether its receptor subsets GABAα2R and GABAR1 in C3-6 DRGs are involved in EA analgesia or not, it remains unknown.

Learn More >

Patterns of gray matter alterations in migraine and restless legs syndrome.

Migraine and restless legs syndrome (RLS) are often comorbid and share elements of pathology; however, their neuroanatomical underpinnings are poorly understood. This study aimed to identify patterns of gray matter volume (GMV) alteration specific to and common among patients with RLS, migraine, and comorbid migraine and RLS.

Learn More >

Multiple effectiveness aspects of tapentadol for moderate-severe cancer-pain treatment: an observational prospective study.

Previous studies have shown the efficacy of tapentadol (TP) for chronic cancer pain. We evaluated multiple effectiveness aspects of TP prolonged release on moderate-severe cancer-related pain, neuropathic pain (NeP), patient satisfaction, and quality of life.

Learn More >

Transcranial magnetic stimulation.

This review presents the neurophysiologic principles and clinical applications of transcranial magnetic stimulation (TMS) and other related techniques of noninvasive cortical stimulation. TMS can serve various purposes for diagnosis or treatment. Regarding diagnosis, TMS is mainly dedicated to the recording of motor evoked potentials (MEPs). MEP recording allows investigation of corticospinal conduction time and cortical motor control in clinical practice. Especially when using image-guided neuronavigation methods, MEP recording is a reliable method to perform functional mapping of muscle representation within the motor cortex. Using various types of paired-pulse paradigms, TMS allows the assessment of brain circuit excitability or plastic changes affecting these circuits. In particular, paired-pulse TMS paradigms are able to appraise the intracortical balance between inhibitory controls mediated by GABAergic neurotransmission and excitatory controls mediated by glutamatergic neurotransmission. Finally, TMS delivered as repetitive trains of stimulation (rTMS) may activate, inhibit, or otherwise interfere with the activity of neuronal cortical networks, depending on stimulus frequency and intensity, and brain-induced electric field configuration. Therefore by modifying brain functions, with after-effects lasting beyond the time of stimulation, rTMS opens exciting perspectives for therapeutic applications, especially in the domain of depression and chronic pain syndromes.

Learn More >

Pharmaceutical Effects of Inhibiting the Soluble Epoxide Hydrolase in Canine Osteoarthritis.

Osteoarthritis (OA) is a degenerative joint disease that causes pain and bone deterioration driven by an increase in prostaglandins (PGs) and inflammatory cytokines. Current treatments focus on inhibiting prostaglandin production, a pro-inflammatory lipid metabolite, with NSAID drugs; however, other lipid signaling targets could provide safer and more effective treatment strategies. Epoxides of polyunsaturated fatty acids (PUFAs) are anti-inflammatory lipid mediators that are rapidly metabolized by the soluble epoxide hydrolase (sEH) into corresponding vicinal diols. Interestingly, diol levels are increased in the synovial fluid of humans with OA, warranting further research on the biological role of this lipid pathway in the progression of OA. sEH inhibitors (sEHI) stabilize these biologically active, anti-inflammatory lipid epoxides, resulting in analgesia in both neuropathic, and inflammatory pain conditions. Most experimental studies testing the analgesic effects of sEH inhibitors have used experimental rodent models, which do not completely represent the complex etiology of painful diseases. Here, we tested the efficacy of sEHI in aged dogs with natural arthritis to provide a better representation of the clinical manifestations of pain. Two sEHI were administered orally, once daily for 5 days to dogs with naturally occurring arthritis to assess efficacy and pharmacokinetics. Blinded technicians recorded the behavior of the arthritic dogs based on pre-determined criteria to assess pain and function. After 5 days, EC1728 significantly reduced pain at a dose of 5 mg/kg compared to vehicle controls. Pharmacokinetic evaluation showed concentrations exceeding the enzyme potency in both plasma and synovial fluid. data showed that epoxyeicosatrienoic acid (EETs), epoxide metabolites of arachidonic acid, decreased inflammatory cytokines, IL-6 and TNF-α, and reduced cytotoxicity in canine chondrocytes challenged with IL1β to simulate an arthritic environment. These results provide the first example of altering lipid epoxides as a therapeutic target for OA potentially acting by protecting chondrocytes from inflammatory induced cytotoxicity. Considering the challenges and high variability of naturally occurring disease in aged dogs, these data provide initial proof of concept justification that inhibiting the sEH is a non-NSAID, non-opioid, disease altering strategy for treating OA, and warrants further investigation.

Learn More >

Subliminal emotional pictures are capable of modulating early cerebral responses to pain in fibromyalgia.

Pain experience involves a complex relationship between sensory and both emotional and cognitive factors, which appear to be mediated by different neural pathways. Previous evidence has shown that whereas conscious processing of unpleasant stimuli enhances pain perception, the influence of emotions on pain under unaware conditions is much less known. The need to better characterise the relationship between pain processing and emotional factors is crucial for dealing with chronic pain conditions. Therefore, the present study aimed to explore the neural correlates relating to the influence of visual masking emotional stimulation on the processing of painful stimuli in chronic pain patients suffering from fibromyalgia (FM). Twenty FM and 22 healthy control (HC) women participated in the study. The experimental masking paradigm consisted of a rapid succession of two types of stimuli, where a masked picture (neutral, negative or pain-related) was followed by a laser stimulus (painful or not painful). LEP activity was recorded at sixty scalp electrodes. An LEP-amplitude approach was used to quantify the main cerebral waves linked to pain response. ANOVAs indicated that the posterior regions of the P1 component were sensitive to experimental manipulation (p<0.05). Specifically, FM patients showed higher amplitudes to painful stimuli preceded by pain-related pictures compared with painful trials preceded by other emotional pictures. The FM group also showed greater amplitudes than those in the HC group in P2a and P2b waves. In addition to the scalp data, at the neural level the posterior cingulate cortex, lingual gyrus and insular cortex showed higher activation in the FM group than in the HC group. Our findings show an early cerebral modulation of pain (as reflected by the P1) in FM patients, suggesting that only pain-related information, even when it is unconsciously perceived, is capable to enhance exogenous (automatic) attention, increasing the neural activity involved in processing painful stimulation. Further research is needed to fully understand unconscious emotional influences on pain in fibromyalgia.

Learn More >

NOP-Related Mechanisms in Pain and Analgesia.

Since the discovery of the NOP receptor and N/OFQ as the endogenous ligand, evidence has appeared demonstrating the involvement of this receptor system in pain. This was not surprising for members of the opioid receptor and peptide families, particularly since both the receptor and N/OFQ are highly expressed in brain regions involved in pain, spinal cord, and dorsal root ganglia. What has been surprising is the complicated picture that has emerged from 25 years of research. The original finding that N/OFQ decreased tail flick and hotplate latency, when administered i.c.v., led to the hypothesis that NOP receptor antagonists could have analgesic activity without abuse liability. However, as data accumulated, it became clear that not only the potency but the activity per se was different when N/OFQ or small molecule NOP agonists were administered in the brain versus the spinal cord and it also depended upon the pain assay used. When administered systemically, NOP receptor agonists are generally ineffective in attenuating heat pain but are antinociceptive in an acute inflammatory pain model. Most antagonists administered systemically have no antinociceptive activity of their own, even though selective peptide NOP antagonists have potent antinociceptive activity when administered i.c.v. Chronic pain models provide different results as well, as small molecule NOP receptor agonists have potent anti-allodynic and anti-hyperalgesic activity after systemic administration. A considerable number of electrophysiological and anatomical experiments, in particular with NOP-eGFP mice, have been conducted in an attempt to explain the complicated profile resulting from NOP receptor modulation, to examine receptor plasticity, and to elucidate mechanisms by which selective NOP agonists, bifunctional NOP/mu agonists, or NOP receptor antagonists modulate acute and chronic pain.

Learn More >

Search