I am a
Home I AM A Search Login

Accepted

Share this

Blockade of peripheral nociceptive signal input relieves the formation of spinal central sensitization and retains morphine efficacy in a neuropathic pain rat model.

Neural plasticity, especially central sensitization, is essential for developing and maintaining neuropathic pain. Unfortunately, the analgesic potency of morphine is greatly reduced in animal models and patients with neuropathic pain. We hypothesized that pre-activation of spinal N-methyl-D-aspartate receptors (NMDARs) by agonist or neuropathic pain facilitated the development of morphine-induced analgesic tolerance. We therefore investigated the effects of spinal NMDAR activation, induced by neuropathic pain, on the development of morphine-induced analgesic tolerance in male Sprague-Dawley rats. Four days of chronic constriction injury (CCI) induced upregulation of spinal NR1. Once established, spinal central sensitization accelerated the development of morphine-induced analgesic tolerance. Continuous ropivacaine infusion prevented CCI-induced increases in spinal Substance P (SP), NR1, and TRPV1. Blockade of peripheral nociceptive inputs prevented chronic morphine-induced increases in spinal SP, NR1, and TRPV1 and a rightward shift of the morphine dose-response curve in the CCI model. These findings suggest that pre-activation of spinal NMDARs contributes to central sensitization and potentiates the development of morphine-induced analgesic tolerance. Interruption of the peripheral nociceptive inputs during the induction phase could prevent spinal central sensitization and retain morphine efficacy, thereby delaying the development of morphine-induced tolerance in patients with neuropathic conditions.

Learn More >

Safety and tolerability of monthly galcanezumab injections in patients with migraine: integrated results from migraine clinical studies.

Galcanezumab, a humanized monoclonal antibody that selectively binds to calcitonin gene-related peptide, has demonstrated a significant reduction in monthly migraine headache days in phase 2 and 3 trials. In these analyses, we aimed to evaluate the safety and tolerability of galcanezumab compared with placebo for prevention of episodic or chronic migraine.

Learn More >

A Phase 3 Trial of Difelikefalin in Hemodialysis Patients with Pruritus.

Difelikefalin is a peripherally restricted and selective agonist of kappa opioid receptors that are considered to be important in modulating pruritus in conditions such as chronic kidney disease.

Learn More >

Proteome characterization of small extracellular vesicles from spared nerve injury model of neuropathic pain.

Exosomes are 30-150 nm extracellular vesicles mediating intercellular communication. Disease states can alter exosome composition affecting the message carried and thereby, its functional impact. The objective of this study was to identify proteins present in these vesicles in a mouse model of neuropathic pain induced by spared nerve injury (SNI). Small extracellular vesicles (sEVs) were purified from serum four weeks after SNI surgery and the protein composition was determined using tandem mass spectrometry and cytokine array. Proteomic analysis detected 274 gene products within sEVs. Of these, 24 were unique to SNI model, 100 to sham surgery control and five to naïve control samples. In addition to commonly expressed sEVs proteins, multiple members of serpin and complement family were detected in sEVs. Cytokine profiling using a membrane-based antibody array showed significant upregulation of complement component 5a (C5a) and Intercellular Adhesion Molecule 1 (ICAM-1) in sEVs from SNI model compared to sham control. We observed a differential distribution of C5a and ICAM-1 within sEVs and serum between sham and SNI, indicating changes from local or paracrine to long distance signaling under neuropathic pain. Our studies suggest critical roles for cargo sorting of vesicular proteins in mediating signaling mechanisms underlying neuropathic pain. SIGNIFICANCE: Approximately 100 million U.S. adults are burdened by chronic pain. Neuropathic pain resulting from injury or dysfunction of the nervous system is challenging to treat. Unlike acute pain that resolves over time, chronic pain persists resulting in changes in the peripheral and central nervous system. The transport of biomolecular cargo comprised of proteins and RNAs by small extracellular vesicles (sEVs) including exosomes has been proposed to be a fundamental mode of intercellular communication. To obtain insights on the role of exosome-mediated information transfer in the context of neuropathic pain, we investigated alterations in protein composition of sEVs in a mouse model of neuropathic pain induced by spared nerve injury (SNI). Our studies using mass spectrometry and cytokine array show that sEVs from SNI model harbor unique proteins. We observed an upregulation of C5a and ICAM-1 in exosomes from SNI model compared to control. There was a differential distribution of C5a and ICAM-1 within exosomes and serum, between control and SNI suggesting a switch from local to long distance signaling. Our studies suggest critical roles for cargo sorting of vesicular proteins in mediating signaling under neuropathic pain.

Learn More >

The impact of chronic widespread pain on health status and long-term health predictors: a general population cohort study.

Chronic widespread pain (CWP) has a negative impact on health status, but results have varied regarding gender-related differences and reported health status. The aim was to study the impact of CWP on health status in women and men aged 35-54 years in a sample of the general population. The aim was further to investigate lifestyle-related predictors of better health status in those with CWP in a 12- and 21-year perspective.

Learn More >

CCL2-CCR2 Axis Potentiates NMDA Receptor Signaling to Aggravate Neuropathic Pain Induced by Brachial Plexus Avulsion.

Brachial plexus avulsion (BPA) represents the most devastating nerve injury in the upper extremity and is always considered as a sophisticated problem due to its resistance to most standard pain relief medications or neurosurgical interventions. There is also a lack of understanding on the underlying mechanisms. Our study aimed to investigate whether spinal CCL2-CCR2 signaling contributed to the development of neuropathic pain following BPA via modulating glutamate N-methyl-d-aspartate receptor (NMDAR). A rat model of BPA on lower trunk (C8-T1) was established, and the sham- and BPA-operated animals were intrathecally injected with saline, CCR2 inhibitor INCB3344 and NMDAR antagonist DL-AP5 one week postoperatively, the behavioral performance of the treated animals and expressions of CCL2, CCR2, and NR2B in spinal cord sections of each group were examined. It was shown that BPA injury significantly reduced mechanic withdrawal thresholds the next day after surgery until the end of the observation. Both CCL2 and CCR2 expressions increased in BPA rats compared to those in sham rats. CCL2 was mainly localized in astrocytes, and CCR2 was preferably expressed on astrocytes and neurons. Besides, NMDAR subunit NR2B increased in BPA-operated rats, which was reversed in response to CCR2 and NR2B inhibition. However, these inhibitors didn't change the spinal NMDAR level in sham rats. CCR2 and NMDAR inhibition efficiently alleviated mechanical allodynia caused by BPA either at early or late phase of neuropathic pain. Collectively, CCL2-CCR2 axis is associated with mechanical pain after BPA by elevating NMDAR signaling.

Learn More >

Enzymatic ligation of a pore blocker toxin and gating modifier toxin; creating double-knotted peptides with improved sodium channel NaV1.7 inhibition.

Disulfide-rich animal venom peptides targeting either the voltage-sensing domain or the pore domain of voltage-gated sodium channel 1.7 (NaV1.7) have been widely studied as drug leads and pharmacological probes for the treatment of chronic pain. However, despite intensive research efforts, the full potential of NaV1.7 as a therapeutic target is yet to be realized. In this study, using evolved sortase A, we enzymatically ligated two known NaV1.7 inhibitors  PaurTx3, a spider-derived peptide toxin that modifies the gating mechanism of the channel through interaction with the voltage-sensing domain, and KIIIA, a small cone snail-derived peptide inhibitor of the pore domain  with the aim of creating a bivalent inhibitor which could interact simultaneously with two non-competing binding sites. Using electrophysiology, we determined the activity at NaV1.7 and to maximize potency, we systematically evaluated the optimal linker length, which was nine amino acids. Our optimized synthetic bivalent peptide showed improved channel affinity and potency at NaV1.7 compared to either PaurTx3 or KIIIA individually. This work shows that novel and improved NaV1.7 inhibitors can be designed by combining a pore blocker toxin and a gating modifier toxin to confer desired pharmacological properties from both the voltage sensing domain and the pore domain.

Learn More >

Loss of endogenous analgesia leads to delayed recovery from incisional pain in a rat model of chronic neuropathic pain.

Preoperative pain and impaired endogenous analgesia are risk factors of chronic postsurgical persistent pain (CPSP). A Chronic neuropathic pain model induced by spinal nerve ligation (SNL6W) shows impaired endogenous analgesia and delayed recovery from incisional pain. Repeated amitriptyline treatment can restore the endogenous analgesia, but its effects on delayed recovery are not clear.

Learn More >

Synthesis of a novel and potent small-molecule antagonist of PAC1 receptor for the treatment of neuropathic pain.

We recently identified novel small-molecule antagonists of the PACAP type I (PAC1) receptor using docking-based in silico screening followed by in vitro/vivo pharmacological assays. In the present study, we synthesized 18 novel derivatives based on the structure of PA-9, a recently developed antagonist of the PAC1 receptor, with a view to obtain a panel of compounds with more potent antagonistic and analgesic activities. Among them, compound 3d showed improved antagonistic activities. Intrathecal injection of 3d inhibited both pituitary adenylate cyclase-activating polypeptide (PACAP) and spinal nerve ligation-induced mechanical allodynia. The effects were more potent than PA-9. Compound 3d also showed anti-allodynic effects following oral administration. Hence, our results suggest that 3d may become an orally available analgesic in the treatment of the neuropathic pain.

Learn More >

Virtual screening to identify potent sepiapterin reductase inhibitors.

Sepiapterin reductase has been identified as a potential drug target for neuropathic and inflammatory pain. Virtual screening was executed against a publicly available x-ray crystal structure of sepiapterin reductase. A set of structurally diverse and potent sepiapterin reductase inhibitors was identified. This set of compounds with favorable ligand efficiency and lipophilic efficiency are tractable for further optimization. An SAR follow-up library was synthesized based on one of the virtual screening hits exploring SAR.

Learn More >

Search