I am a
Home I AM A Search Login

Accepted

Share this

How mice feel each other’s pain or fear.

Learn More >

The effectiveness of biofeedback for improving pain, disability and work ability in adults with neck pain: A systematic review and meta-analysis.

Biofeedback is used to optimise muscle activation patterns in people with neck pain.

Learn More >

Photobiomodulation therapy is not better than placebo in patients with chronic non-specific low back pain: a randomised placebo-controlled trial.

Photobiomodulation therapy (PBMT) has been used in several musculoskeletal disorders to reduce pain, inflammation and promoting tissue regeneration. The current evidence about the effects of PBMT on low back pain are still conflicting. We aimed to evaluate the effects of photobiomodulation therapy against placebo on pain intensity and disability in patients with chronic non-specific low back pain. This was a prospectively registered, randomised placebo-controlled trial, with blinded patients, therapists and assessors. The study was conducted on an outpatient physical therapy clinic in Brazil, between April 2017 and May 2019. A total of 148 patients with chronic non-specific low back pain were randomised to either active photobiomodulation therapy (n=74) or placebo (n=74). Patients from both groups received 12 treatment sessions, 3 times a week, for 4 weeks. Patients from both groups also received an educational booklet based on 'The Back Book'. Clinical outcomes were measured at baseline and at follow-up appointments at 4 weeks, 3, 6 and 12 months after randomization. The primary outcomes were pain intensity and disability measured at 4 weeks. We estimated the treatment effects using linear mixed models following the principles of intention to treat. There was no clinical important between-group differences in terms of pain intensity (Mean Difference=0.01 point; 95% CI=-0.94 to 0.96) and disability (Mean Difference=-0.63 points; 95% CI=-2.23 to 0.97) at 4 weeks. Patients did not report any adverse events. Photobiomodulation therapy was not better than placebo to reduce pain and disability in patients with chronic non-specific low back pain.

Learn More >

Photobiomodulation therapy for chronic low back pain: time to move on.

Learn More >

T Cells as Guardians of Pain Resolution.

Despite successful research efforts aimed at understanding pain mechanisms, there is still no adequate treatment for many patients suffering from chronic pain. The contribution of neuroinflammation to chronic pain is widely acknowledged. Here, we summarize findings indicating that T cells play a key role in the suppression of pain. An active contribution of the immune system to resolution of pain may explain why immunosuppressive drugs are often not sufficient to control pain. This would also imply that dysregulation of certain immune functions promote transition to chronic pain. Conversely, stimulating the endogenous immune-mediated resolution pathways may provide a potent approach to treat chronic pain.

Learn More >

A role for protease activated receptor type 3 (PAR3) in nociception demonstrated through development of a novel peptide agonist.

The protease activated receptor (PAR) family is a group of G-protein coupled receptors (GPCRs) activated by proteolytic cleavage of the extracellular domain. PARs are expressed in a variety of cell types with crucial roles in hemostasis, immune responses, inflammation, and pain. PAR3 is the least researched of the four PARs, with little known about its expression and function. We sought to better understand its potential function in the peripheral sensory nervous system. Mouse single-cell RNA sequencing data demonstrates that PAR3 is widely expressed in dorsal root ganglion (DRG) neurons. Co-expression of PAR3 mRNA with other PARs was identified in various DRG neuron subpopulations, consistent with its proposed role as a coreceptor of other PARs. We developed a lipid tethered PAR3 agonist, C660, that selectively activates PAR3 by eliciting a Ca response in DRG and trigeminal (TG) neurons. In vivo, C660 induces mechanical hypersensitivity and facial grimacing in WT but not PAR3 mice. We characterized other nociceptive phenotypes in PAR3 mice and found a loss of hyperalgesic priming in response to IL-6, carrageenan, and a PAR2 agonist, suggesting that PAR3 contributes to long-lasting nociceptor plasticity in some contexts. To examine the potential role of PAR3 in regulating the activity of other PARs in sensory neurons, we administered PAR1, PAR2, and PAR4 agonists and assessed mechanical and affective pain behaviors in WT and PAR3 mice. We observed that the nociceptive effects of PAR1 agonists were potentiated in the absence of PAR3. Our findings suggest a complex role of PAR3 in the physiology and plasticity of nociceptors. Perspective: We evaluated the role of PAR3, a G-protein coupled receptor, in nociception by developing a selective peptide agonist. Our findings suggest that PAR3 contributes to nociception in various contexts and plays a role in modulating the activity of other PARs.

Learn More >

The neuroprotective effect of oxytocin on vincristine-induced neurotoxicity in mice.

Vincristine (VCR) is commonly used to treat a variety of hematological malignancies and solid tumors in pediatric and adult patients. However, peripheral neuropathy is a dose-limiting side effect that leaves some patients with functional disability and long-term pain. Oxytocin (OT) has demonstrated analgesic and anti-inflammatory properties, but there is no evidence regarding its effects on VCR-induced neurotoxicity. Therefore, we evaluated the potential protective effects of OT on VCR-induced neurotoxicity. In vitro, VCR (0.005 ∼ 0.1 µmol/l) and OT (10 ∼ 10 mol/l) were added into cultured primary dorsal root ganglion (DRG) neurons of mice. The length of neurites was counted by using immunofluorescence. In vivo, neurotoxicity was induced in mice by administration of VCR (0.1 mg/kg, intraperitoneal injection for 14 days) with or without pretreatment of OT (0.1 mg/kg or 1 mg/kg). Atosiban, an OT receptor (OTR) antagonist and OTR knockout (KO) mice were used for evaluating effects of OTR. Mechanical hyperalgesia was measured by using von Frey filaments. Histology of plantar skin, sciatic nerve and DRG was observed by using transmission electron microscopy (TEM) and hematoxylin-eosin (HE) staining. Results indicated that OT alleviated VCR-induced neurite damage in cultured primary DRG neurons in vitro. In vivo, OT ameliorated VCR-induced hyperalgesia. Histologically, OT attenuated the VCR-induced damages of nerve endings, myelin sheaths and Schwann cells in sciatic nerve and DRG. These effects were antagonized by atosiban. In addition, OTR knockout mice exhibited more severe hyperalgesia than wild-type mice. Globally, these results indicated that OT may have neuroprotective effects on vincristine-induced neurotoxicity in mice.

Learn More >

Switching of delta opioid receptor subtypes in central amygdala microcircuits is associated with anxiety states in pain.

Anxiety is often comorbid with pain. Delta opioid receptors (DORs) are promising targets for the treatment of pain and mental disorders with little addictive potential. However, their roles in anxiety symptoms at different stages of pain are unclear. In the current study, mice with inflammatory pain at the 4th hour following complete Freund's adjuvant (CFA) injection displayed significant anxiety-like behavior, which disappeared at the 7th day. Combining electrophysiology, optogenetics, and pharmacology, we found that activation of delta opioid receptor 1 (DOR1) in the central nucleus amygdala (CeA) inhibited both the anxiolytic excitatory input from the basolateral amygdala (BLA) and the anxiogenic excitatory input from the parabrachial nucleus (PBN). In contrast, activation of delta opioid receptor 2 (DOR2) did not affect CeA excitatory synaptic transmission in normal and 4-hour CFA mice but inhibited the excitatory projection from the PBN rather than the BLA in 7-day CFA mice. Furthermore, the function of both DOR1 and DOR2 was downregulated to the point of not being detectable in the CeA of mice at the 21st day following CFA injection. Taken together, these results suggest that functional switching of DOR1 and DOR2 is associated with anxiety states at different stages of pain via modulating the activity of specific pathways (BLA-CeA and PBN-CeA).

Learn More >

Sulfasalazine alleviates neuropathic pain hypersensitivity in mice through inhibition of SGK-1 in the spinal cord.

Diurnal variations in pain hypersensitivity are common in chronic pain disorders. Temporal exacerbation of neuropathic pain hypersensitivity is dependent on diurnal variations in glucocorticoid secretion from the adrenal glands. We previously demonstrated that spinal expression of serum- and glucocorticoid-inducible kinase-1 (SGK-1) is associated with glucocorticoid- induced exacerbation of pain hypersensitivity, but there are no available strategies to inhibit SGK-1 in the spinal cord. By screening a clinically approved drug library (more than 1,200 drugs), we found that sulfasalazine (SSZ) has inhibitory effects on SGK-1. SSZ is a prodrug composed of 5-aminosalicylic acid and sulfapyridine linked by N=N bond, which is therapeutically effective for inflammatory bowel diseases. However, the N=N bond in SSZ was necessary for its inhibitory action against SGK-1. Although intrathecal injection of SSZ to nerve-injured mice significantly alleviated mechanical pain hypersensitivity, no significant anti- neuropathic pain effects of SSZ were detected after oral administration due to its low bioavailability and limited spinal distribution, which were associated with efflux by the xenobiotic transporter breast cancer resistance protein (BCRP). Concomitant oral administration of SSZ with febuxostat (FBX), which is an approved drug to inhibit BCRP, improved the distribution of SSZ to the spinal cord. The concomitant oral administration with FBX also increased the anti-neuropathic pain effects of SSZ. Our study revealed a previously unrecognized pharmacological effect of SSZ to alleviate SGK-1-induced painful peripheral neuropathy, and concomitant oral administration of SSZ with FBX may also be a preventative option for diurnal exacerbation of neuropathic pain hypersensitivity.

Learn More >

A National Survey on Patient Provider Agreements When Prescribing Opioids for Chronic Pain.

Many national guidelines recommend the use of patient provider agreements (PPAs) when prescribing opioids for chronic pain. There are no standards for PPA content, readability, or administration processes.

Learn More >

Search