I am a
Home I AM A Search Login

Accepted

Share this

Spinal cord fractalkine (CX3CL1) signaling is critical for neuronal sensitization in experimental non-specific, myofascial low back pain.

Neuroactive substances released by activated microglia contribute to hyperexcitability of spinal dorsal horn neurons in many animal models of chronic pain. An important feedback loop mechanism is via release of fractalkine (CX3CL1) from primary afferent terminals and dorsal horn neurons and binding to CX3CR1 receptors on microglial cells. We studied the involvement of fractalkine signaling in latent and manifest spinal sensitization induced by two injections of nerve growth factor (NGF) into the lumbar multifidus muscle as a model for myofascial low back pain. Single dorsal horn neurons were recorded in vivo to study their receptive fields and spontaneous activity. Under intrathecal vehicle application, the two NGF injections led to an increased proportion of neurons responding to stimulation of deep tissues (41%), to receptive field expansion into the hind limb (15%), and to resting activity (53%). Blocking fractalkine signaling by continuous intrathecal administration of neutralizing antibodies completely prevented these signs of spinal sensitization to a similar extent as in a previous study with the microglia inhibitor minocycline. Reversely, fractalkine itself induced similar sensitization in a dose dependent manner (for 200 ng/ml: 45% deep tissue responses, 24% receptive field expansion, 45% resting activity) as repeated nociceptive stimulation by intramuscular NGF injections. A subsequent single NGF injection did not have an additive effect. Our data suggest that neuron to microglia signaling via the CX3CL1-CX3CR1 pathway is critically involved in the initiation of non-specific, myofascial low back pain through repetitive nociceptive stimuli.

Learn More >

Involvement of the BNP/NPR-A/BKCa pathway in rat trigeminal ganglia following chronic constriction injury.

Accumulating evidence indicates that the brain natriuretic peptide(BNP) and its receptor (natriuretic peptide receptor, NPR) are widely distributed in a variety of tissues including trigeminal ganglion (TG). Furthermore, recent studies support the involvement of the BNP-NPRA pathway in acute and chronic pain. To investigate the role of this pathway in chronic pain, an infraorbital nerve-chronic constriction injury (ION-CCI) model of trigeminal neuralgia (TN) was produced in the rat. The time-course of changes in mechanical pain threshold was examined. We observed an upregulation of BNP and NPR-A and a downregulation of BKCa mRNA and protein in rats subjected to ION-CCI. Patch clamping experiments in vitro found that BKCa currents were significantly reduced in rats subjected to ION-CCI. BNP increased BKCa currents in ION-CCI rats. These results suggest that BNP and NPRA might serve as endogenous pain relievers in ION-CCI rats. Modulation of the BNP/NPR-A/BKCa channel pathway in TG may be a viable strategy for the treatment of TN.

Learn More >

Predictive coding models for pain perception.

Pain is a complex, multidimensional experience that involves dynamic interactions between sensory-discriminative and affective-emotional processes. Pain experiences have a high degree of variability depending on their context and prior anticipation. Viewing pain perception as a perceptual inference problem, we propose a predictive coding paradigm to characterize evoked and non-evoked pain. We record the local field potentials (LFPs) from the primary somatosensory cortex (S1) and the anterior cingulate cortex (ACC) of freely behaving rats-two regions known to encode the sensory-discriminative and affective-emotional aspects of pain, respectively. We further use predictive coding to investigate the temporal coordination of oscillatory activity between the S1 and ACC. Specifically, we develop a phenomenological predictive coding model to describe the macroscopic dynamics of bottom-up and top-down activity. Supported by recent experimental data, we also develop a biophysical neural mass model to describe the mesoscopic neural dynamics in the S1 and ACC populations, in both naive and chronic pain-treated animals. Our proposed predictive coding models not only replicate important experimental findings, but also provide new prediction about the impact of the model parameters on the physiological or behavioral read-out-thereby yielding mechanistic insight into the uncertainty of expectation, placebo or nocebo effect, and chronic pain.

Learn More >

Anxiety and Fear Avoidance Beliefs and Behavior May Be Significant Risk Factors for Chronic Opioid Analgesic Therapy Reliance for Patients with Chronic Pain – Results from a Preliminary Study.

To describe differences between patients with chronic, non-cancer pain (CNCP) who were successfully able to cease full mu agonist chronic opioid analgesic therapy (COAT), and those who exhibited refractory COAT reliance, amongst those who participated in a multidisciplinary program designed for COAT cessation.

Learn More >

A Glra3 phospho-deficient mouse mutant establishes the critical role of PKA-dependent phosphorylation and inhibition of glycine receptors in spinal inflammatory hyperalgesia.

Glycinergic neurons and glycine receptors (GlyRs) exert a critical control over spinal nociception. Prostaglandin E2 (PGE2), a key inflammatory mediator produced in the spinal cord in response to peripheral inflammation, inhibits a certain subtype of GlyRs (α3GlyR) that is defined by the inclusion of α3 subunits and distinctly expressed in the lamina II of the spinal dorsal horn, i.e., at the site where most nociceptive nerve fibers terminate. Previous work has shown that the hyperalgesic effect of spinal PGE2 is lost in mice lacking α3GlyRs and suggested that this phenotype results from the prevention of PGE2-evoked protein kinase A (PKA)-dependent phosphorylation and inhibition of α3GlyRs. However, direct proof for a contribution of this phosphorylation event to inflammatory hyperalgesia was still lacking. In order to address this knowledge gap, a phospho-deficient mouse line was generated that carries a serine to alanine point mutation at a strong consensus site for PKA-dependent phosphorylation in the long intracellular loop of the GlyR α3 subunit. These mice showed unaltered spinal expression of GlyR α3 subunits. In behavioral experiments, they showed no alterations in baseline nociception, but were protected from the hyperalgesic effects of intrathecally injected PGE2 and exhibited markedly reduced inflammatory hyperalgesia. These behavioral phenotypes closely recapitulate those found previously in GlyR α3-deficient mice. Our results thus firmly establish the crucial role of PKA-dependent phosphorylation of α3GlyR the inflammatory hyperalgesia.

Learn More >

Extracellular vesicle-encapsulated microRNA-23a from dorsal root ganglia neurons binds to A20 and promotes inflammatory macrophage polarization following peripheral nerve injury.

Extracellular vesicles (EVs) are capable of transferring microRNAs (miRNAs or miRs) between two different types of cells and also serve as vehicles for delivery of therapeutic molecules. After peripheral nerve injury, abnormal expression patterns of miRNAs have been observed in dorsal root ganglia (DRG) sensory neurons. We hypothesized that sensory neurons secrete miRs-containing EVs to communicate with macrophages. We demonstrated that miR-23a was upregulated in DRG neurons in spared nerve injury (SNI) mouse models. We also found that miR-23a was enriched in EVs released by cultured DRG neurons following capsaicin treatment. miR-23a-containing EVs were taken up into macrophages in which increased intracellular miR-23a promoted pro-inflammatory phenotype. A20 was verified as a target gene of miR-23a. Moreover, intrathecal delivery of EVs-miR-23a antagomir attenuated neuropathic hypersensitivity and reduced the number of M1 macrophages in injured DRGs by targeting A20. In conclusion, these results demonstrate that sensory neurons transfer EVs-encapsulated miR-23a to activate M1 macrophages and enhance neuropathic pain following the peripheral nerve injury. The study highlighted a new therapeutic approach to alleviate chronic neuropathic pain after nerve trauma by targeting detrimental miRNA in sensory neurons.

Learn More >

Comparison of joint degeneration and pain in male and female mice in DMM model of osteoarthritis.

While the prevalence of radiographic and symptomatic osteoarthritis (OA) is higher in women, male mice are more frequently used in animal experiments to explore its pathogenesis or drug efficacy. In this study, we examined whether sexual dimorphism affects pain and joint degeneration in destabilization of the medial meniscus (DMM) mouse model.

Learn More >

Pituitary adenylate cyclase-activating polypeptide promotes cutaneous dendritic cell functions in contact hypersensitivity.

Sensory nerves regulate cutaneous local inflammation indirectly through induction of pruritus and directly by acting upon local immune cells. The underlying mechanisms for how sensory nerves influence cutaneous acquired immune responses remain to be clarified.

Learn More >

Neuronal plumes initiate spreading depolarization, the electrophysiologic event driving migraine and stroke.

In this issue of Neuron, Parker et al. discover neuronal plumes of glutamate release that initiate spreading depolarization, the electrophysiologic event underlying migraine. Mice with human migraine mutations express spontaneous and frequent plumes, which may explain the propensity to develop migraine attacks and the increased stroke risk in migraine-susceptible brains.

Learn More >

Inhibition of autotaxin activity ameliorates neuropathic pain derived from lumbar spinal canal stenosis.

Lumbar spinal canal stenosis (LSS) or mechanical compression of dorsal root ganglion (DRG) is one of the causes of low back pain and neuropathic pain (NP). Lysophosphatidic acid (LPA) is a potent bioactive lipid mediator that is produced mainly from lysophosphatidylcholine (LPC) via autotaxin (ATX) and is known to induce NP via LPA receptor signaling in mice. Recently, we demonstrated that LPC and LPA were higher in cerebrospinal fluid (CSF) of patients with LSS. Based on the possible potential efficacy of the ATX inhibitor for NP treatment, we used an NP model with compression of DRG (CD model) and investigated LPA dynamics and whether ATX inhibition could ameliorate NP symptoms, using an orally available ATX inhibitor (ONO-8430506) at a dose of 30 mg/kg. In CD model, we observed increased LPC and LPA levels in CSF, and decreased threshold of the pain which were ameliorated by oral administration of the ATX inhibitor with decreased microglia and astrocyte populations at the site of the spinal dorsal horn projecting from injured DRG. These results suggested possible efficacy of ATX inhibitor for the treatment of NP caused by spinal nerve root compression and involvement of the ATX-LPA axis in the mechanism of NP induction.

Learn More >

Search