I am a
Home I AM A Search Login

Accepted

Share this

A candidate neuroimaging biomarker for detection of neurotransmission-related functional alterations and prediction of pharmacological analgesic response in chronic pain.

Chronic pain is a world-wide clinical challenge. Response to analgesic treatment is limited and difficult to predict. Functional MRI has been suggested as a potential solution. However, while most analgesics target specific neurotransmission pathways, functional MRI-based biomarkers are not specific for any neurotransmitter system, limiting our understanding of how they might contribute to predict treatment response. Here, we sought to bridge this gap by applying Receptor-Enriched Analysis of Functional Connectivity by Targets to investigate whether neurotransmission-enriched functional connectivity mapping can provide insights into the brain mechanisms underlying chronic pain and inter-individual differences in analgesic response after a placebo or duloxetine. We performed secondary analyses of two openly available resting-state functional MRI data sets of 56 patients with chronic knee osteoarthritis pain who underwent pre-treatment brain scans in two clinical trials. Study 1 ( = 17) was a 2-week single-blinded placebo pill trial. Study 2 ( = 39) was a 3-month double-blinded randomized trial comparing placebo to duloxetine, a dual serotonin-noradrenaline reuptake inhibitor. Across two independent studies, we found that patients with chronic pain present alterations in the functional circuit related to the serotonin transporter, when compared with age-matched healthy controls. Placebo responders in Study 1 presented with higher pre-treatment functional connectivity enriched by the dopamine transporter compared to non-responders. Duloxetine responders presented with higher pre-treatment functional connectivity enriched by the serotonin and noradrenaline transporters when compared with non-responders. Neurotransmission-enriched functional connectivity mapping might hold promise as a new mechanistic-informed biomarker for functional brain alterations and prediction of response to pharmacological analgesia in chronic pain.

Learn More >

Harnessing Intranasal Delivery Systems of Sumatriptan for the Treatment of Migraine.

Sumatriptan (ST) is a commonly prescribed drug for treating migraine. The efficiency of several routes of ST administration has been investigated. Recently, the intranasal route with different delivery systems has gained interest owing to its fast-acting and effectiveness. The present study is aimed at reviewing the available studies on novel delivery systems for intranasal ST administration. The oral route of ST administration is common but complicated with some problems. Gastroparesis in patients with migraine may reduce the absorption and effectiveness of ST upon oral use. Furthermore, the gastrointestinal (GI) system and hepatic metabolism can alter the pharmacokinetics and clinical effects of ST. The bioavailability of conventional nasal liquids is low due to the deposition of a large fraction of the delivered dose of a drug in the nasal cavity. Several delivery systems have been utilized in a wide range of preclinical and clinical studies to enhance the bioavailability of ST. The beneficial effects of the dry nasal powder of ST (AVP-825) have been proven in clinical studies. Moreover, other delivery systems based on microemulsions, microspheres, and nanoparticles have been introduced, and their higher bioavailability and efficacy were demonstrated in preclinical studies. Based on the extant findings, harnessing novel delivery systems can improve the bioavailability of ST and enhance its effectiveness against migraine attacks. However, further clinical studies are needed to approve the safety and efficacy of employing such systems in humans.

Learn More >

Headache neuroimaging: A survey of current practice, barriers, and facilitators to optimal use.

The objective of this study was to understand current practice, clinician understanding, attitudes, barriers, and facilitators to optimal headache neuroimaging practices.

Learn More >

LncRNA MRAK159688 facilitates morphine tolerance by promoting REST-mediated inhibition of mu opioid receptor in rats.

Morphine tolerance (MT) caused by the long-term use of morphine is a major medical problem. The molecular mechanism of morphine tolerance remains elusive. Here, we established a morphine tolerance model in rats and verified whether the long noncoding RNA (lncRNA) MRAK159688 is involved in morphine tolerance and its specific molecular mechanism. We show the significant upregulation of MRAK159688 expression in the spinal cord of morphine-tolerant rats. Overexpression of MRAK159688 by a lentivirus reduces the analgesic efficacy of morphine and induces pain behavior. Downregulation of MRAK159688 using a small interfering RNA (siRNA) attenuates the formation of morphine tolerance, partially reverses the development of morphine tolerance and alleviates morphine-induced hyperalgesia. MRAK159688 is located in the nucleus and cytoplasm of neurons, and it colocalizes with repressor element-1 silencing transcription factor (REST) in the nucleus. MRAK159688 potentiates the expression and function of REST, thereby inhibiting the expression of mu opioid receptor (MOR) and subsequently inducing morphine tolerance. Moreover, REST overexpression blocks the effects of MRAK159688 siRNA on relieving morphine tolerance. In general, chronic morphine administration-mediated upregulation of MRAK159688 in the spinal cord contributes to morphine tolerance and hyperalgesia by promoting REST-mediated inhibition of MOR. MRAK159688 downregulation may represent a novel RNA-based therapy for morphine tolerance.

Learn More >

Editorial: Pain 360: Emerging topics in the pathophysiology, diagnosis, and treatment of chronic pain.

Learn More >

The chronification mechanism of orofacial inflammatory pain: Facilitation by GPER1 and microglia in the rostral ventral medulla.

Chronic orofacial pain is a common and incompletely defined clinical condition. The role of G protein-coupled estrogen receptor 1 (GPER1) as a new estrogen receptor in trunk and visceral pain regulation is well known. Here, we researched the role of GPER1 in the rostral ventral medulla (RVM) during chronic orofacial pain.

Learn More >

Bibliometric analysis of publication trends and research hotspots in vagus nerve stimulation: A 20-year panorama.

As a promising neuromodulation technique, vagus nerve stimulation (VNS) has been utilized to treat diverse diseases and the number of VNS studies has grown prosperously. Nonetheless, publication trends and research hotspots in this field remain unknown. This study aimed to perform a bibliometric analysis to systematically identify publication trends and research hotspots in VNS research within a 20-year panorama.

Learn More >

How should we define a nociceptor in the gut-brain axis?

In the past few years, there has been extraordinary interest in how the gut communicates with the brain. This is because substantial and gathering data has emerged to suggest that sensory nerve pathways between the gut and brain may contribute much more widely in heath and disease, than was originally presumed. In the skin, the different types of sensory nerve endings have been thoroughly characterized, including the morphology of different nerve endings and the sensory modalities they encode. This knowledge is lacking for most types of visceral afferents, particularly spinal afferents that innervate abdominal organs, like the gut. In fact, only recently have the nerve endings of spinal afferents in any visceral organ been identified. What is clear is that spinal afferents play the major role in pain perception from the gut to the brain. Perhaps surprisingly, the majority of spinal afferent nerve endings in the gut express the ion channel TRPV1, which is often considered to be a marker of "nociceptive" neurons. And, a majority of gut-projecting spinal afferent neurons expressing TRPV1 are activated at low thresholds, in the "normal" physiological range, well below the normal threshold for detection of painful sensations. This introduces a major conundrum regarding visceral nociception. How should we define a "nociceptor" in the gut? We discuss the notion that nociception from the gut wall maybe a process encrypted into multiple different morphological types of spinal afferent nerve ending, rather than a single class of sensory ending, like free-endings, suggested to underlie nociception in skin.

Learn More >

A mechanistic understanding of the relationship between skin innervation and chemotherapy-induced neuropathic pain.

Neuropathic pain is a frequent complication of chemotherapy-induced peripheral neurotoxicity (CIPN). Chemotherapy-induced peripheral neuropathies may serve as a model to study mechanisms of neuropathic pain, since several other common causes of peripheral neuropathy like painful diabetic neuropathy may be due to both neuropathic and non-neuropathic pain mechanisms like ischemia and inflammation. Experimental studies are ideally suited to study changes in morphology, phenotype and electrophysiologic characteristics of primary afferent neurons that are affected by chemotherapy and to correlate these changes to behaviors reflective of evoked pain, mainly hyperalgesia and allodynia. However, hyperalgesia and allodynia may only represent one aspect of human pain, i.e., the sensory-discriminative component, while patients with CIPN often describe their pain using words like annoying, tiring and dreadful, which are affective-emotional descriptors that cannot be tested in experimental animals. To understand why some patients with CIPN develop neuropathic pain and others not, and which are the components of neuropathic pain that they are experiencing, experimental and clinical pain research should be combined. Emerging evidence suggests that changes in subsets of primary afferent nerve fibers may contribute to specific aspects of neuropathic pain in both preclinical models and in patients with CIPN. In addition, the role of cutaneous neuroimmune interactions is considered. Since obtaining dorsal root ganglia and peripheral nerves in patients is problematic, analyses performed on skin biopsies from preclinical models as well as patients provide an opportunity to study changes in primary afferent nerve fibers and to associate these changes to human pain. In addition, other biomarkers of small fiber damage in CIPN, like corneal confocal microscope and quantitative sensory testing, may be considered.

Learn More >

Advances in research on fat infiltration and lumbar intervertebral disc degeneration.

Low back pain (LBP) is a disabling condition with no available cure, severely affecting patients' quality of life. Intervertebral disc degeneration (IVDD) is the leading cause of chronic low back pain (CLBP). IVDD is a common and recurrent condition in spine surgery. Disc degeneration is closely associated with intervertebral disc inflammation. The intervertebral disc is an avascular tissue in the human body. Transitioning from hematopoietic bone marrow to bone marrow fat may initiate an inflammatory response as we age, resulting in bone marrow lesions in vertebrae. In addition, the development of LBP is closely associated with spinal stability imbalance. An excellent functional state of paraspinal muscles (PSMs) plays a vital role in maintaining spinal stability. Studies have shown that the diminished function of PSMs is mainly associated with increased fat content, but whether the fat content of PSMs is related to the degree of disc degeneration is still under study. Given the vital role of PSMs lesions in CLBP, it is crucial to elucidate the interaction between PSMs changes and CLBP. Therefore, this article reviews the advances in the relationship and the underlying mechanisms between IVDD and PSMs fatty infiltration in patients with CLBP.

Learn More >

Search