I am a
Home I AM A Search Login

Accepted

Share this

Exploring patient perceptions of repetitive transcranial magnetic stimulation as a treatment for chronic musculoskeletal pain: a qualitative study.

Repetitive transcranial magnetic stimulation (rTMS), a form of non-invasive brain stimulation, is a novel avenue for the management of chronic musculoskeletal pain. Despite evidence for the effectiveness of rTMS in chronic pain conditions, the clinical uptake of rTMS remains limited and little is known regarding patient perceptions of this therapeutic technique.

Learn More >

Patient preferences for atopic dermatitis medications in the UK, France and Spain: a discrete choice experiment.

We aimed to quantify patient preferences for efficacy, safety and convenience features of atopic dermatitis (AD) treatments.

Learn More >

DNA Origami as a Nanomedicine for Targeted Rheumatoid Arthritis Therapy through Reactive Oxygen Species and Nitric Oxide Scavenging.

Rheumatoid arthritis (RA) severely threatens human health by causing inflammation, swelling, and pain in the joints and resulting in persistent synovitis and irreversible joint disability. In the development of RA, pro-inflammatory M1 macrophages, which express high levels of reactive oxygen species (ROS) and nitric oxide (NO), induce synovial inflammation and bone erosion. Eliminating ROS and NO in the inflamed joints is a potential RA therapeutic approach, which can drive the transition of pro-inflammatory M1 macrophages to the anti-inflammatory M2 phenotype. Taking advantage of the intrinsic ROS- and NO-scavenging capability of DNA molecules, herein, we report the development of folic acid-modified triangular DNA origami nanostructures (FA-tDONs) for targeted RA treatment. FA-tDONs could efficiently scavenge ROS and NO and actively target M1 macrophages, facilitating the M1-to-M2 transition and the recovery of associated cytokines and biomarkers to the normal level. The therapeutic efficacy of FA-tDONs was examined in the RA mouse model. As validated by appearance, histological, and serum examinations, FA-tDONs treatment effectively alleviated synovial infiltration and cartilage damage, attenuating disease progression. This study demonstrated the usage of DNA origami for RA treatment and suggested its potential in other antioxidant therapies.

Learn More >

Effect of Graded Sensorimotor Retraining on Pain Intensity in Patients With Chronic Low Back Pain: A Randomized Clinical Trial.

The effects of altered neural processing, defined as altering neural networks responsible for perceptions of pain and function, on chronic pain remains unclear.

Learn More >

Brain Connectivity Predicts Chronic Pain in Acute Mild Traumatic Brain Injury.

Previous studies have established the role of the cortico-mesolimbic and descending pain modulation systems in chronic pain prediction. Mild traumatic brain injury (mTBI) is an acute pain model where chronic pain is prevalent and complicated for prediction. In this study, we set out to study whether functional connectivity (FC) of the nucleus accumbens (NAc) and the periaqueductal gray matter (PAG) is predictive of pain chronification in early-acute mTBI.

Learn More >

The role of glia underlying acupuncture analgesia in animal pain models, a systematic review and meta-analysis.

As a traditional Chinese therapy, acupuncture is proposed worldwide as a treatment for pain and other health problems, but the findings of acupuncture analgesia have been inconsistent due to its variable modalities of therapeutic intervention.

Learn More >

Pathophysiology of Nociception and Rare Genetic Disorders with Increased Pain Threshold or Pain Insensitivity.

Pain and nociception are different phenomena. Nociception is the result of complex activity in sensory pathways. On the other hand, pain is the effect of interactions between nociceptive processes, and cognition, emotions, as well as the social context of the individual. Alterations in the nociceptive route can have different genesis and affect the entire sensorial process. Genetic problems in nociception, clinically characterized by reduced or absent pain sensitivity, compose an important chapter within pain medicine. This chapter encompasses a wide range of very rare diseases. Several genes have been identified. These genes encode the Nav channels 1.7 and 1.9 (, and genes, respectively), and its receptor tyrosine receptor kinase A, as well as the transcription factor PRDM12, and autophagy controllers (). Monogenic disorders provoke hereditary sensory and autonomic neuropathies. Their clinical pictures are extremely variable, and a precise classification has yet to be established. Additionally, pain insensitivity is described in diverse numerical and structural chromosomal abnormalities, such as Angelman syndrome, Prader Willy syndrome, Chromosome 15q duplication syndrome, and Chromosome 4 interstitial deletion. Studying these conditions could be a practical strategy to better understand the mechanisms of nociception and investigate potential therapeutic targets against pain.

Learn More >

Managing pain and inflammation associated with musculoskeletal disease: time for a change?

Learn More >

Transgenic Mice for the Translational Study of Neuropathic Pain and Dystonia.

Murine models are fundamental in the study of clinical conditions and the development of new drugs and treatments. Transgenic technology has started to offer advantages in oncology, encompassing all research fields related to the study of painful syndromes. Knockout mice or mice overexpressing genes encoding for proteins linked to pain development and maintenance can be produced and pain models can be applied to transgenic mice to model the most disabling neurological conditions. Due to the association of movement disorders with sensitivity and pain processing, our group focused for the first time on the role of the torsinA gene GAG deletion-responsible for DYT1 dystonia-in baseline sensitivity and neuropathic responses. The aim of the present report are to review the complex network that exists between the chaperonine-like protein torsinA and the baseline sensitivity pattern-which are fundamental in neuropathic pain-and to point at its possible role in neurodegenerative diseases.

Learn More >

An analgesic peptide H-20 attenuates chronic pain via the PD-1 pathway with few adverse effects.

The lack of effective and safe analgesics for chronic pain management has been a health problem associated with people's livelihoods for many years. Analgesic peptides have recently shown significant therapeutic potential, as they are devoid of opioid-related adverse effects. Programmed cell death protein 1 (PD-1) is widely expressed in neurons. Activation of PD-1 by PD-L1 modulates neuronal excitability and evokes significant analgesic effects, making it a promising target for pain treatment. However, the research and development of small molecule analgesic peptides targeting PD-1 have not been reported. Here, we screened the peptide H-20 using high-throughput screening. The in vitro data demonstrated that H-20 binds to PD-1 with micromolar affinity, evokes Src homology 2 domain-containing tyrosine phosphatase 1 (SHP-1) phosphorylation, and diminishes nociceptive signals in dorsal root ganglion (DRG) neurons. Preemptive treatment with H-20 effectively attenuates perceived pain in naïve WT mice. Spinal H-20 administration displayed effective and longer-lasting analgesia in multiple preclinical pain models with a reduction in or absence of tolerance, abuse liability, constipation, itch, and motor coordination impairment. In summary, our findings reveal that H-20 is a promising candidate drug that ameliorates chronic pain in the clinic.

Learn More >

Search