I am a
Home I AM A Search Login

Accepted

Share this

Moderators and Nonspecific Predictors of Treatment Benefits in a Randomized Trial of Mindfulness-Based Stress Reduction vs. Cognitive-Behavioral Therapy vs. Usual Care for Chronic Low Back Pain.

Both mindfulness-based stress reduction (MBSR) and cognitive-behavioral therapy (CBT) are effective for chronic low back pain (CLBP), but little is known regarding who might benefit more from one than the other. Using data from a randomized trial comparing MBSR, CBT, and usual care (UC) for adults aged 20-70 years with CLBP (N = 297), we examined baseline characteristics that moderated treatment effects or were associated with improvement regardless of treatment. Outcomes included 8-week function (modified Roland Disability Questionnaire), pain bothersomeness (0-10 numerical rating scale), and depression (Patient Health Questionnaire-8). There were differences in the effects of CBT vs. MBSR on pain based on participant gender (P = 0.03) and baseline depressive symptoms (P = 0.01), but the only statistically significant moderator after Bonferroni correction was the nonjudging dimension of mindfulness. Scores on this measure moderated the effects of CBT vs. MBSR on both function (P = 0.001) and pain (P = 0.04). Pain control beliefs (P < 0.001) and lower anxiety (P < 0.001) predicted improvement regardless of treatment. Replication of these findings is needed to guide treatment decision-making for CLBP. TRIAL REGISTRATION: The trial and analysis plan were preregistered in ClinicalTrials.gov (Identifier: NCT01467843). PERSPECTIVE: Although few potential moderators and nonspecific predictors of benefits from CBT or MBSR for CLBP were statistically significant after adjustment for multiple comparisons, these findings suggest potentially fruitful directions for confirmatory research while providing reassurance that patients could reasonably expect to benefit from either treatment.

Learn More >

Changes in the expression of endocannabinoid system components in an experimental model of chemotherapy-induced peripheral neuropathic pain: Evaluation of sex-related differences.

Chemotherapy-induced neuropathic pain is a serious clinical problem and one of the major side effects in cancer treatment. The endocannabinoid system (ECS) plays a crucial role in regulating pain neurotransmission, and changes in the expression of different components of the ECS have been reported in experimental models of persistent pain. In addition, sex differences have been observed in ECS regulation and function. The aim of our study was to evaluate whether administration of oxaliplatin, a neurotoxic antineoplastic agent, induced changes in the expression of ECS components in peripheral and central stations of the pain pathway, and if those changes exhibited sexual dimorphism. Adult male and female rats were injected with oxaliplatin or saline, and mechanical and cold hypersensitivity and allodynia were evaluated using Von Frey and Choi Tests. The mRNA levels corresponding to cannabinoid receptors (CB1, CB2), cannabinoid-related receptors (GPR55, 5HT1A, TRPV1) and to the main enzymes involved in the synthesis (DAGL, DAGL, NAPE-PLD) and degradation (MGL, FAAH) of endocannabinoids were assessed in lumbar dorsal root ganglia (DRGs) and spinal cord by using real time RT-PCR. In addition, the levels of the main endocannabinoids, 2-arachidonoylglycerol (2-AG) and anandamide (AEA), were evaluated using commercial ELISA kits. Oxaliplatin administration induced the development of mechanical and cold hypersensitivity and allodynia in male and female animals. Oxaliplatin also induced early and robust changes in the expression of several components of the ECS in DRGs. A marked upregulation of CB1, CB2, 5HT1A and TRPV1 was detected in both sexes. Interestingly, while DAGL mRNA levels remained unchanged, DAGL was downregulated in male and upregulated in female rats. Finally, MGL and NAPE-PLD showed increased levels only in male animals, while FAAH resulted upregulated in both sexes. In parallel, reduced 2-AG and AEA levels were detected in DRGs from male or female rats, respectively. In the lumbar spinal cord, only TRPV1 mRNA levels were found to be upregulated in both sexes. Our results reveal previously unreported changes in the expression of cannabinoid receptors, ligands and enzymes occurring mainly in the peripheral nervous system and displaying certain sexual dimorphism. These changes may contribute to the physiopathology of oxaliplatin-induced neuropathic pain in male and female rats. A better understanding of these dynamic changes will facilitate the development of mechanism- and sex-specific approaches to optimize the use of cannabinoid-based medicines for the treatment of chemotherapy-induced pain.

Learn More >

Potential Therapeutic Effects of Short-chain Fatty Acids on Chronic Pain.

The intestinal homeostasis maintained by the gut microbiome and relevant metabolites is essential for health, and its disturbance leads to various intestinal or extraintestinal diseases. Recent studies suggest that gut microbiome-derived metabolites short-chain fatty acids (SCFAs) are involved in different neurological disorders (such as chronic pain). SCFAs are produced by bacterial fermentation of dietary fibers in the gut and contribute to multiple host processes, including gastrointestinal regulation, cardiovascular modulation, and neuroendocrine-immune homeostasis. Although SCFAs have been implicated in the modulation of chronic pain, the detailed mechanisms that underlie such roles of SCFAs remain to be further investigated. In this review, we summarize currently available research data regarding SCFAs as a potential therapeutic target for chronic pain treatment and discuss several possible mechanisms by which SCFAs modulate chronic pain.

Learn More >

Ultrasound-Guided Peripheral Nerve Blocks: A Practical Review for Acute Cancer-Related Pain.

Ultrasound-guided regional techniques, including catheter-based approaches, are a subset of interventional therapies that have gained interest as an option for managing acute cancer-related pain. The authors sought to review the available published evidence and to discuss practical recommendations for expanding access to such therapies.

Learn More >

Inhibition of Spinal 5-HT3 Receptor and Spinal Dorsal Horn Neuronal Excitability Alleviates Hyperalgesia in a Rat Model of Parkinson’s Disease.

Pain in Parkinson's disease (PD) is increasingly recognized as a major factor associated with poor life quality of PD patients. However, classic therapeutic drugs supplying dopamine have limited therapeutic effects on PD-related pain. This suggests that there is a mechanism outside the dopamine system that causes pain in PD. Our previous study demonstrated that 6-OHDA induced PD model manifested hyperalgesia to thermal and mechanical stimuli and decreased serotonin (5-hydroxytryptamine; 5-HT) in the spinal dorsal horn (SDH). Several 5-HT receptor subtypes have been confirmed to be associated with nociception in the spinal cord, such as 5-HT1A receptor, 5-HT1B receptor, 5-HT2 receptor, 5-HT3 receptor, and 5-HT7 receptor. Most research has shown that 5-HT1A receptor and 5-HT3 receptor play a key role in pain transmission in the spinal cord. We hypothesized that hyperalgesia of 6-OHDA rats may be related to increased excitability of SDH neurons, and functional change of 5-HT3 receptor may reverse the hyperalgesia of 6-OHDA lesioned rats and decrease cell excitability of SDH neurons. To test this hypothesis, we used whole-cell patch-clamp and pharmacological methods to evaluate the effect of 5-HT3 receptor and 5-HT1A receptor on the hyperalgesia of 6-OHDA rats. The results suggested that increased excitability in SDH neurons could be reversed by 5-HT3 receptor antagonist ondansetron (20 μmol/L) and palosetron (10 μmol/L), but not 5-HT3 receptor agonist m-CPBG (30 μmol/L) and SR 57,727 (10 μmol/L), 5-HT1A receptor agonist 8-OH DPAT (10 μmol/L) and eptapirone (10 μmol/L) and 5-HT1A receptor antagonist WAY-100635 (10 μmol/L) and p-MPPI (10 μmol/L). Intrathecal injection of ondansetron (0.1 mg/kg) but not m-CPBG (0.1 mg/kg), 8-OH DPAT (0.1 mg/kg), and WAY-100635 (0.1 mg/kg) significantly attenuated the mechanical hyperalgesia and thermal hyperalgesia in 6-OHDA lesioned rats. In conclusion, the present study suggests that inhibition of spinal 5-HT3 receptor and SDH neuronal excitability alleviates hyperalgesia in PD rats. Our study provides a novel mechanism or therapeutic strategy for pain in patients with PD.

Learn More >

Targeting the endocannabinoid system for the treatment of abdominal pain in irritable bowel syndrome.

The management of visceral pain in patients with disorders of gut-brain interaction, notably irritable bowel syndrome, presents a considerable clinical challenge, with few available treatment options. Patients are increasingly using cannabis and cannabinoids to control abdominal pain. Cannabis acts on receptors of the endocannabinoid system, an endogenous system of lipid mediators that regulates gastrointestinal function and pain processing pathways in health and disease. The endocannabinoid system represents a logical molecular therapeutic target for the treatment of pain in irritable bowel syndrome. Here, we review the physiological and pathophysiological functions of the endocannabinoid system with a focus on the peripheral and central regulation of gastrointestinal function and visceral nociception. We address the use of cannabinoids in pain management, comparing them to other treatment modalities, including opioids and neuromodulators. Finally, we discuss emerging therapeutic candidates targeting the endocannabinoid system for the treatment of pain in irritable bowel syndrome.

Learn More >

The link between epigenetics, pain sensitivity and chronic pain.

Increasing evidence suggests an association between gene expression and clinical pain. Epigenetic modifications are the main modulators of gene expression or protein translation in response to environmental stimuli and pathophysiological conditions. Preclinical and clinical studies indicate that epigenetic modifications could also impact the development of pain, the transition from acute to chronic pain, and the maintenance hereof.

Learn More >

Pain sensitivity in relation to frequency of migraine and tension-type headache with or without coexistent neck pain: an exploratory secondary analysis of the population study.

We aimed to investigate whether coexistent self-reported neck pain influences cephalic and extracephalic pain sensitivity in individuals with migraine and tension-type headache (TTH) in relation to diagnosis and headache frequency.

Learn More >

Network Analysis Reveals That Headache-Related, Psychological and Psycho-Physical Outcomes Represent Different Aspects in Women with Migraine.

Evidence supports that migraine is a complex pain condition with different underlying mechanisms. We aimed to quantify potential associations between demographic, migraine-related, and psychophysical and psychophysical variables in women with migraine. Demographic (age, height, and weight), migraine-related (intensity, frequency, and duration), related-disability (Migraine Disability Assessment Scale, Headache Disability Inventory), psychological (Hospital Anxiety and Depression Scale), and psycho-physical (pressure pain thresholds -PPTs-) variables were collected from a sample of 74 women suffering from migraine. We calculated adjusted correlations between the variables by using a network analysis. Additionally, we also calculated centrality indices to identify the connectivity among the variables within the network and the relevance of each variable in the network. Multiple positive correlations (ρ) between PPTs were observed ranging from 0.1654 (C5-C6 and tibialis anterior) to 0.40 (hand and temporalis muscle). The strongest associations within the network were those between migraine attack frequency and diagnosis of chronic migraine (ρ = 0.634) and between the HDI-E and HDI-P (ρ = 0.545). The node with the highest strength and betweenness centrality was PPT at the second metacarpal, whereas the node with the highest harmonic centrality was PPT at the tibialis anterior muscle. This is the first study applying a network analysis to understand the underlying mechanisms in migraine. The identified network revealed that a model where each subgroup of migraine-related, psychological, and psycho-physical variables showed no interaction between each variable. Current findings could have clinical implications for developing multimodal treatments targeting the identified mechanisms.

Learn More >

Capsaicin Inhibits Multiple Voltage-Gated Ion Channels in Rabbit Ventricular Cardiomyocytes in TRPV1-Independent Manner.

Capsaicin is a naturally occurring alkaloid derived from chili pepper which is responsible for its hot, pungent taste. It exerts multiple pharmacological actions, including pain-relieving, anti-cancer, anti-inflammatory, anti-obesity, and antioxidant effects. Previous studies have shown that capsaicin significantly affects the contractility and automaticity of the heart and alters cardiovascular functions. In this study, the effects of capsaicin were investigated on voltage-gated ion currents in rabbit ventricular myocytes. Capsaicin inhibited rapidly activated () and slowly activated () K currents and transient outward () K current with IC values of 3.4 µM,14.7 µM, and 9.6 µM, respectively. In addition, capsaicin, at higher concentrations, suppressed voltage-gated Na and Ca currents and inward rectifier current with IC values of 42.7 µM, 34.9 µM, and 38.8 µM, respectively. Capsaicin inhibitions of , , , , , and were not reversed in the presence of capsazepine (3 µM), a TRPV1 antagonist. The inhibitory effects of capsaicin on these currents developed gradually, reaching steady-state levels within 3 to 6 min, and the recoveries were usually incomplete during washout. In concentration-inhibition curves, apparent Hill coefficients higher than unity suggested multiple interaction sites of capsaicin on these channels. Collectively, these findings indicate that capsaicin affects cardiac electrophysiology by acting on a diverse range of ion channels and suggest that caution should be exercised when capsaicin is administered to carriers of cardiac channelopathies or to individuals with arrhythmia-prone conditions, such as ischemic heart diseases.

Learn More >

Search