I am a
Home I AM A Search Login

Accepted

Share this

Hypnosis and relaxation interventions for chronic pain management in cancer survivors: a randomized controlled trial.

Nonpharmacological interventions such as hypnosis show promising evidence for the self-management of pain and pain-related sequelae among cancer survivors. The purpose of this study was to evaluate the efficacy of a 4-week recorded hypnosis intervention in reducing pain intensity compared to a recorded relaxation intervention in cancer survivors with chronic pain.

Learn More >

Non-nociceptive and nociceptive-like trigeminal Aβ-afferent neurons of rats: distinct electrophysiological properties, mechanical and chemical sensitivity.

The role of Aβ-afferents in somatosensory function is often oversimplified as low threshold mechanoreceptors (LTMRs) with large omission of Aβ-afferent involvement in nociception. Recently, we have characterized Aβ-afferent neurons which have large diameter somas in the trigeminal ganglion (TG) and classified them into non-nociceptive and nociceptive-like TG afferent neurons based on their electrophysiological properties. Here, we extend our previous observations to further characterize electrophysiological properties of trigeminal Aβ-afferent neurons and investigate their mechanical and chemical sensitivity by patch-clamp recordings from large-diameter TG neurons in ex vivo TG preparations of adult male and female rats. Based on cluster analysis of electrophysiological properties, trigeminal Aβ-afferent neurons can be classified into five discrete types (type I, IIa, IIb, IIIa, and IIIb), which responded differentially to mechanical stimulation and sensory mediators including serotonin (5-HT), acetylcholine (ACh) and adenosine triphosphate (ATP). Notably, type I neuron action potential (AP) was small in amplitude, width was narrow in duration, and peak dV/dt repolarization was great with no deflection observed, whereas discretely graded differences were observed for type IIa, IIb, IIIa, and IIIb, as AP increased in amplitude, width broadened in duration, and peak dV/dt repolarization reduced with the emergence of increasing deflection. Type I, IIa, and IIb neurons were mostly mechanically sensitive, displaying robust and rapidly adapting mechanically activated current (IMA) in response to membrane displacement, while IIIa and IIIb, conversely, were almost all mechanically insensitive. Interestingly, mechanical insensitivity coincided with increased sensitivity to 5-HT and ACh. Together, type I, IIa and IIb display features of LTMR Aβ-afferent neurons while type IIIa and type IIIb show properties of nociceptive Aβ-afferent neurons.

Learn More >

Phenotypic screen identifies the natural product silymarin as a novel anti-inflammatory analgesic.

Sensory neuron hyperexcitability is a critical driver of pathological pain and can result from axon damage, inflammation, or neuronal stress. G-protein coupled receptor (GPCR) signaling can induce pain amplification by modulating the activation of Trp-family ionotropic receptors and voltage-gated ion channels. Here, we sought to use calcium imaging to identify novel inhibitors of the intracellular pathways that mediate sensory neuron sensitization and lead to hyperexcitability. We identified a novel stimulus cocktail consisting of L-054,264, a SST2R agonist, and CYM5541, a S1PR3 agonist, that elicits calcium responses in mouse primary sensory neurons in vitro as well as pain and thermal hypersensitivity in mice in vivo. We screened a library of 906 bioactive compounds and identified 24 hits that reduced calcium flux elicited by L-054,264/CYM5541. Among these hits, silymarin, a natural product derived from milk thistle, strongly reduced activation by the stimulation cocktail, as well as by a distinct inflammatory cocktail containing bradykinin and prostaglandin E2. Silymarin had no effect on sensory neuron excitability at baseline, but reduced calcium flux via Orai channels and downstream mediators of phospholipase C signaling. In vivo, silymarin pretreatment blocked development of adjuvant-mediated thermal hypersensitivity, indicating potential use as an anti-inflammatory analgesic.

Learn More >

Piezo2 channels expressed by colon-innervating TRPV1-lineage neurons mediate visceral mechanical hypersensitivity.

Inflammatory and functional gastrointestinal disorders such as irritable bowel syndrome (IBS) and obstructive bowel disorder (OBD) underlie the most prevalent forms of visceral pain. Although visceral pain can be generally provoked by mechanical distension/stretch, the mechanisms that underlie visceral mechanosensitivity in colon-innervating visceral afferents remain elusive. Here, we show that virally mediated ablation of colon-innervating TRPV1-expressing nociceptors markedly reduces colorectal distention (CRD)-evoked visceromotor response (VMR) in mice. Selective ablation of the stretch-activated Piezo2 channels from TRPV1 lineage neurons substantially reduces mechanically evoked visceral afferent action potential firing and CRD-induced VMR under physiological conditions, as well as in mouse models of zymosan-induced IBS and partial colon obstruction (PCO). Collectively, our results demonstrate that mechanosensitive Piezo2 channels expressed by TRPV1-lineage nociceptors powerfully contribute to visceral mechanosensitivity and nociception under physiological conditions and visceral hypersensitivity under pathological conditions in mice, uncovering potential therapeutic targets for the treatment of visceral pain.

Learn More >

A Supportive Self-Management Program for People With Chronic Headaches and Migraine: A Randomized Controlled Trial and Economic Evaluation.

Chronic headache disorders are a major cause of pain and disability. Education and supportive self-management approaches could reduce burden of headache disability. We tested the effectiveness of a group educational and supportive self-management programme for people living with chronic headaches.

Learn More >

Characterization of Antibodies against Receptor Activity-Modifying Protein 1 (RAMP1): A Cautionary Tale.

Calcitonin gene-related peptide (CGRP) is a key component of migraine pathophysiology, yielding effective migraine therapeutics. CGRP receptors contain a core accessory protein subunit: receptor activity-modifying protein 1 (RAMP1). Understanding of RAMP1 expression is incomplete, partly due to the challenges in identifying specific and validated antibody tools. We profiled antibodies for immunodetection of RAMP1 using Western blotting, immunocytochemistry and immunohistochemistry, including using RAMP1 knockout mouse tissue. Most antibodies could detect RAMP1 in Western blotting and immunocytochemistry using transfected cells. Two antibodies (844, ab256575) could detect a RAMP1-like band in Western blots of rodent brain but not RAMP1 knockout mice. However, cross-reactivity with other proteins was evident for all antibodies. This cross-reactivity prevented clear conclusions about RAMP1 anatomical localization, as each antibody detected a distinct pattern of immunoreactivity in rodent brain. We cannot confidently attribute immunoreactivity produced by RAMP1 antibodies (including 844) to the presence of RAMP1 protein in immunohistochemical applications in brain tissue. RAMP1 expression in brain and other tissues therefore needs to be revisited using RAMP1 antibodies that have been comprehensively validated using multiple strategies to establish multiple lines of convincing evidence. As RAMP1 is important for other GPCR/ligand pairings, our results have broader significance beyond the CGRP field.

Learn More >

Protocol for Biospecimen Collection and Analysis within the BACPAC Research Program.

The Biospecimen Collection and Processing Working Group of the NIH HEAL Initiative BACPAC Research Program was charged with identifying molecular biomarkers of interest to chronic low back pain (cLBP). Having identified biomarkers of interest, the Working Group worked with the New York University Grossman School of Medicine, Center for Biospecimen Research and Development-funded by the Early Phase Pain Investigation Clinical Network Data Coordinating Center-to harmonize consortium-wide and site-specific efforts for biospecimen collection and analysis. Biospecimen collected are saliva, blood (whole, plasma, serum), urine, stool, and spine tissue (paraspinal muscle, ligamentum flavum, vertebral bone, facet cartilage, disc endplate, annulus fibrosus, or nucleus pulposus). The omics data acquisition and analyses derived from the biospecimen include genomics and epigenetics from DNA, proteomics from protein, transcriptomics from RNA, and microbiomics from 16S rRNA. These analyses contribute to the overarching goal of BACPAC to phenotype cLBP and will guide future efforts for precision medicine treatment.

Learn More >

A Fenchone Derivative Effectively Abrogates Joint Damage Following Post-Traumatic Osteoarthritis in Lewis Rats.

In a previous report, we have identified the cannabinoid receptor 2 (CB2) agonist HU308 to possess a beneficial effect in preventing age and trauma-induced osteoarthritis (OA) in mice. The effects of HU308 were largely related to the capacity of this compound to induce cartilage anabolism which was dependent on the CREB/SOX9 axis, and exhibited pro-survival and pro-proliferative hallmarks of articular cartilage following treatment. Here, we utilized the novel cannabinoid-fenchone CB2 agonists (1B, 1D), which were previously reported to render anti-inflammatory effects in a zymosan model.

Learn More >

Somatosensory neurons express specific sets of lincRNAs, and lincRNA CLAP promotes itch sensation in mice.

Somatosensory neurons are highly heterogeneous with distinct types of neural cells responding to specific stimuli. However, the distribution and roles of cell-type-specific long intergenic noncoding RNAs (lincRNAs) in somatosensory neurons remain largely unexplored. Here, by utilizing droplet-based single-cell RNA-seq (scRNA-seq) and full-length Smart-seq2, we show that lincRNAs, but not coding mRNAs, are enriched in specific types of mouse somatosensory neurons. Profiling of lincRNAs from single neurons located in dorsal root ganglia (DRG) identifies 200 lincRNAs localized in specific types or subtypes of somatosensory neurons. Among them, the conserved cell-type-specific lincRNA CLAP associates with pruritus and is abundantly expressed in somatostatin (SST)-positive neurons. CLAP knockdown reduces histamine-induced Ca influx in cultured SST-positive neurons and in vivo reduces histamine-induced scratching in mice. In vivo knockdown of CLAP also decreases the expression of neuron-type-specific and itch-related genes in somatosensory neurons, and this partially depends on the RNA binding protein MSI2. Our data reveal a cell-type-specific landscape of lincRNAs and a function for CLAP in somatosensory neurons in sensory transmission.

Learn More >

Rubbing Salt in the Wound: Molecular Evolutionary Analysis of Pain-Related Genes Reveals the Pain Adaptation of Cetaceans in Seawater.

Pain, usually caused by a strong or disruptive stimulus, is an unpleasant sensation that serves as a warning to organisms. To adapt to extreme environments, some terrestrial animals have evolved to be inherently insensitive to pain. Cetaceans are known as supposedly indifferent to pain from soft tissue injury representatives of marine mammals. However, the molecular mechanisms that explain how cetaceans are adapted to pain in response to seawater environment remain unclear. Here, we performed a molecular evolutionary analysis of pain-related genes in selected representatives of cetaceans. gene was identified to be pseudogenized in all odontocetes (toothed whales) except from (sperm whales), and relaxed selection of this gene was detected in toothed whales with pseudogenized . In addition, positive selection was detected in pain perception (i.e., , , , and ) and analgesia (i.e., , , , and ) genes among the examined cetaceans. In this study, potential convergent amino acid substitutions within predicted proteins were found among the examined cetaceans and other terrestrial mammals, inhabiting extreme environments (e.g., V441I of TRPV1 in cetaceans and naked mole rats). Moreover, specific amino acid substitutions within predicted sequences of several proteins were found in the studied representatives of cetaceans (e.g., F56L and D163A of ASIC3, E88G of GRK2, and F159L of OPRD1). Most of the substitutions were located within important functional domains of proteins, affecting their protein functions. The above evidence suggests that cetaceans might have undergone adaptive molecular evolution in pain-related genes through different evolutionary patterns to adapt to pain, resulting in greater sensitivity to pain and more effective analgesia. This study could have implications for diagnosis and treatment of human pain.

Learn More >

Search