I am a
Home I AM A Search Login

Papers of the Week

Papers: 17 Dec 2022 - 23 Dec 2022

2022 Dec 16

Mol Pain

Phenotypic screen identifies the natural product silymarin as a novel anti-inflammatory analgesic.


DuBreuil DM, Lai X, Zhu K, Chahyadinata G, Perner C, Chiang B, Battenberg A, Sokol C, Wainger B
Mol Pain. 2022 Dec 16:17448069221148351.
PMID: 36526437.


Sensory neuron hyperexcitability is a critical driver of pathological pain and can result from axon damage, inflammation, or neuronal stress. G-protein coupled receptor (GPCR) signaling can induce pain amplification by modulating the activation of Trp-family ionotropic receptors and voltage-gated ion channels. Here, we sought to use calcium imaging to identify novel inhibitors of the intracellular pathways that mediate sensory neuron sensitization and lead to hyperexcitability. We identified a novel stimulus cocktail consisting of L-054,264, a SST2R agonist, and CYM5541, a S1PR3 agonist, that elicits calcium responses in mouse primary sensory neurons in vitro as well as pain and thermal hypersensitivity in mice in vivo. We screened a library of 906 bioactive compounds and identified 24 hits that reduced calcium flux elicited by L-054,264/CYM5541. Among these hits, silymarin, a natural product derived from milk thistle, strongly reduced activation by the stimulation cocktail, as well as by a distinct inflammatory cocktail containing bradykinin and prostaglandin E2. Silymarin had no effect on sensory neuron excitability at baseline, but reduced calcium flux via Orai channels and downstream mediators of phospholipase C signaling. In vivo, silymarin pretreatment blocked development of adjuvant-mediated thermal hypersensitivity, indicating potential use as an anti-inflammatory analgesic.