I am a
Home I AM A Search Login

Accepted

Share this

Pain Treatment and Cancer Patients: Are we Heeding Quality of Life?

The use of opioid analgesics remains the primary therapy for pain control in cancer patients. However, ample evidence persists showing that treatment is still inadequate. This cross-sectional study was carried out during one year in a Brazilian Cancer Hospital to evaluate the impact of opioid use on analgesia and patients' quality of life. The Pain Management Index (PMI), EORTC QLQ.C30 (Quality of Life of Cancer Patients), Karnofsky Performance Status (KPS), Douleur Neuropathique 4 (DN4), and Brief Pain Inventory-Short Form (BPI-SF) were used. A hundred patients with advanced solid tumors and using opioids were included, with 82% of them reporting daily pain with 58% having intense pain. Morphine with a mean dose of 49 Morphine Milligram Equivalent were used by 57% of them, and PMI was negative in 34% of the sample. Neuropathic pain was found in 72% of patients. The pain was related to all BPI variables. Despite the substantial negative impact of pain on QOL, no association was found between the clinical factors assessed and QOL itself. This gap can be related to the persistence of high levels of sub-treatment, depression, and neuropathic pain associated with the use of low doses of opiates and adjuvant medications in the sample.

Learn More >

Activation of protease-activated receptor-1 causes chronic pain in lupus-prone mice via suppressing spinal glial glutamate transporter function and enhancing glutamatergic synaptic activity.

Systemic lupus erythematosus (SLE) is an unpredictable autoimmune disease where the body's immune system mistakenly attacks healthy tissues in many parts of the body. Chronic pain is one of the most frequently reported symptoms among SLE patients. We previously reported that MRL lupus prone (MRL/lpr) mice develop hypersensitivity to mechanical and heat stimulation. In the present study, we found that the spinal protease-activated receptor-1(PAR1) plays an important role in the genesis of chronic pain in MRL/lpr mice. Female MRL/lpr mice with chronic pain had activation of astrocytes, over-expression of thrombin and PAR1, enhanced glutamatergic synaptic activity, as well as suppressed activity of adenosine monophosphate-activated protein kinase (AMPK) and glial glutamate transport function in the spinal cord. Intrathecal injection of either the PAR1 antagonist, or AMPK activator attenuated heat hyperalgesia and mechanical allodynia in MRL/lpr mice. Furthermore, we also identified that the enhanced glutamatergic synaptic activity and suppressed activity of glial glutamate transporters in the spinal dorsal horn of MRL/lpr mice are caused by activation of the PAR1 and suppression of AMPK signaling pathways. These findings suggest that targeting the PAR1and AMPK signaling pathways in the spinal cord may be a useful approach for treating chronic pain caused by SLE.

Learn More >

Efficacy and Safety of Lebrikizumab in Combination With Topical Corticosteroids in Adolescents and Adults With Moderate-to-Severe Atopic Dermatitis: A Randomized Clinical Trial (ADhere).

Lebrikizumab (LEB), a high-affinity monoclonal antibody targeting interleukin (IL)-13, demonstrated efficacy and safety in patients with moderate-to-severe atopic dermatitis (AD) during 16 weeks of monotherapy in a phase 2b trial, and two 52-week phase 3 trials.

Learn More >

Somatostatin Neurons from Periaqueductal Gray to Medulla Facilitate Neuropathic Pain in Male Mice.

Projections from the periaqueductal gray (PAG) to the rostral ventromedial medulla (RVM) are known to engage in descending pain modulation, but how the neural substrates of the PAG-RVM projections contribute to neuropathic pain remains largely unknown. In this study, we showed somatostatin-expressing glutamatergic neurons in the lateral/ventrolateral PAG that facilitate mechanical and thermal hypersensitivity in a mouse model of chemotherapy-induced neuropathic pain. We found that these neurons form direct excitatory connections with neurons in the RVM region. Inhibition of this PAG-RVM projection alleviates mechanical and thermal hypersensitivity associated with neuropathy, whereas its activation enhances hypersensitivity in the mice. Thus, our findings revealed that somatostatin neurons within the PAG-RVM axial are crucial for descending pain facilitation and can potentially be exploited as a useful therapeutic target for neuropathic pain. PERSPECTIVE: We report the profound contribution of somatostatin neurons within the PAG-RVM projections to descending pain facilitation underlying neuropathic pain. These results may help to develop central therapeutic strategies for neuropathic pain.

Learn More >

Light-Related Cutaneous Symptoms of Erythropoietic Protoporphyria and Associations With Light Sensitivity Measurements.

Erythropoietic protoporphyria (EPP) is a rare and underdiagnosed genetic disease characterized by painful sensitivity to light. A better understanding and characterization of its light-induced cutaneous symptoms may aid in the identification of EPP in patients.

Learn More >

ROS-responsive magnesium-containing microspheres for antioxidative treatment of intervertebral disc degeneration.

Intervertebral disc degeneration (IVDD) is a degenerative disease characterized by lower-back pain, causing disability globally. Antioxidant therapy is currently considered one of the most promising strategies for IVDD treatment, given the crucial role of reactive oxygen species (ROS) in IVDD pathogenesis. Herein, a ROS-responsive magnesium-containing microsphere (Mg@PLPE MS) was constructed for the antioxidative treatment of IVDD. The Mg@PLPE MS has a core-shell structure comprising poly(lactic-co-glycolic acid) (PLGA) and ROS-responsive polymer poly(PBT-co-EGDM) as the shell and a magnesium microparticle as the core. The poly(PBT-co-EGDM) can be destroyed by HO through the HO-triggered hydrophobic-to-hydrophilic transition, subsequently promoting an Mg-water reaction to produce H. Thus, Mg@PLPE MS provides a valuable platform for HO elimination and controlled H release. The generated H scavenge for ROS by reacting with noxious •OH. Notably, the Mg@PLPE MS exerted significant antioxidative and anti-inflammatory effects in a disc degeneration rat model and alleviated extracellular matrix degradation and disc cells apoptosis, thereby underlining its efficacy in IVDD treatment. The Mg@PLPE MS also exhibited robust biocompatibility and negligible toxicity, presenting the promise for the antioxidative treatment of IVDD in vivo. STATEMENT OF SIGNIFICANCE: Antioxidant therapy is currently considered one of the most promising strategies for intervertebral disc degeneration (IVDD) treatment, given the crucial role of reactive oxygen species (ROS) in IVDD pathogenesis. Here, ROS-responsive magnesium-containing microspheres (Mg@PLPE MSs) were constructed to alleviate IVDD through controlled release of hydrogen gas. The Mg@PLPE MSs can effectively scavenge overproduced ROS by simultaneously reacting with HO and •OH, thus creating a suitable microenvironment for inhibition of ECM degradation. As a result, Mg@PLPE MSs treated IVDD rats exhibit minimal nucleus pulposus decrease, less extracellular matrix degradation, minimal radial fissure of fibrous rings, and higher disc height index. Therefore, the as-prepared Mg@PLPE MS may shed a new light on clinical treatment of IVDD.

Learn More >

SCN9A variant in a family of mixed breed dogs with congenital insensitivity to pain.

Congenital insensitivity to pain (CIP) and hereditary sensory and autonomic neuropathies (HSANs) are a rare group of genetic disorders causing inability to feel pain. Three different associated variants have been identified in dogs: 1 in Border Collies, 1 in mixed breed dogs, and 1 in Spaniels and Pointers.

Learn More >

Longitudinal changes of serum cytokines in patients with chronic low back pain and Modic changes.

To explore serum cytokine levels over time in patients with chronic low back pain (cLBP) and Modic changes (MCs), difference in change between treatment groups in the Antibiotics in Modic Changes (AIM) study and associations between change in cytokines and low back pain.

Learn More >

Intraperitoneal 5-Azacytidine Alleviates Nerve Injury-Induced Pain in Rats by Modulating DNA Methylation.

To investigate the role of DNA methylation in modulating chronic neuropathic pain (NPP), identify possible target genes of DNA methylation involved in this process, and preliminarily confirm the medicinal value of the DNA methyltransferases (DNMTs) inhibitor 5-azacytidine (5-AZA) in NPP by targeting gene methylation. Two rat NPP models, chronic constriction injury (CCI) and spinal nerve ligation (SNL), were used. The DNA methylation profiles in the lumbar spinal cord were assayed using an Arraystar Rat RefSeq Promoter Array. The underlying genes with differential methylation were then identified and submitted to Gene Ontology and pathway analysis. Methyl-DNA immunoprecipitation quantitative PCR (MeDIP-qPCR) and quantitative reverse transcription-PCR (RT-qPCR) were used to confirm gene methylation and expression. The protective function of 5-AZA in NPP and gene expression were evaluated via behavioral assays and RT-qPCR, respectively. Analysis of the DNA methylation patterns in the lumbar spinal cord indicated that 1205 differentially methylated fragments in CCI rats were located within DNA promoter regions, including 638 hypermethylated fragments and 567 hypomethylated fragments. The methylation levels of Grm4, Htr4, Adrb2, Kcnf1, Gad2, and Pparg, which are associated with long-term potentiation (LTP) and glutamatergic synapse pathways, were increased with a corresponding decrease in their mRNA expression, in the spinal cords of CCI rats. Moreover, we found that the intraperitoneal injection of 5-AZA (4 mg/kg) attenuated CCI- or SNL-induced mechanical allodynia and thermal hyperalgesia. Finally, the mRNA expression of hypermethylated genes such as Grm4, Htr4, Adrb2, Kcnf1, and Gad2 was reversed after 5-AZA treatment. CCI induced widespread methylation changes in the DNA promoter regions in the lumbar spinal cord. Intraperitoneal 5-AZA alleviated hyperalgesia in CCI and SNL rats, an effect accompanied by the reversed expression of hypermethylated genes. Thus, DNA methylation inhibition represents a promising epigenetic strategy for protection against chronic NPP following nerve injury. Our study lays a theoretical foundation for 5-AZA to become a clinical targeted drug.

Learn More >

Mesenchymal stem cell-derived extracellular vesicles carrying miR-99b-3p restrain microglial activation and neuropathic pain by stimulating autophagy.

Neuropathic pain is a complex condition that seriously affects human quality of life. This study aimed to investigate the therapeutic mechanism of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) and try to discover new targets for alleviating neuropathic pain. Extracellular vesicles were isolated and identified via ultracentrifugation. BV-2 microglial cells were stimulated with lipopolysaccharide (LPS) in the presence or absence of MSC-EVs. Further, microglial activation and neuroinflammation were evaluated by flow cytometry, RT-qPCR, and ELISA. High-throughput sequencing analysis was performed to reveal the differentially expressed (DE) miRNAs in BV-2 microglia. Autophagy-related regulators were assessed by Western blotting and Immunofluorescence staining. Chronic constriction injury (CCI) model was used to induce neuropathic pain in rats, and the mechanical withdrawal threshold (MWT) was measured. High-throughput sequencing analysis identified 17 DE miRNAs, which were mainly enriched in PI3K-AKT and mTOR signaling pathways. MSC-EVs inhibited the activation of PI3K/AKT/mTOR signaling pathway in LPS-stimulated microglia. Moreover, MSC-EVs treatment enhanced the autophagy level in activated microglia, whereas autophagy inhibitor 3-MA reversed the suppressing effects of MSC-EVs on microglial activation and neuroinflammation. The MSC-EV-mediated transfer of miR-99b-3p was verified to promote microglial autophagy, and miR-99b-3p overexpression suppressed the expression of pro-inflammatory factors in activated microglia. During in vivo studies, intrathecal injection of MSC-EVs significantly up-regulated the expression of miR-99b-3p, and alleviated mechanical allodynia caused by activated microglia in the spinal cord dorsal horn of CCI rats. Moreover, MSC-EVs treatment repaired CCI-induced autophagic impairment by stimulating autophagy in the spinal cord. Collectively, our findings demonstrated that MSC-EVs had an analgesic effect on neuropathic pain via promoting autophagy, and these antinociceptive effects were at least in part caused by MSC-EV-mediated transfer of miR-99b-3p, thereby inhibiting microglial activation and pro-inflammatory cytokines expression.

Learn More >

Search