I am a
Home I AM A Search Login

Papers: 1 Feb 2020 - 7 Feb 2020

Share this

The prolactin receptor long isoform regulates nociceptor sensitization and opioid-induced hyperalgesia selectively in females.

Pain is more prevalent in women for reasons that remain unclear. We have identified a mechanism of injury-free nociceptor sensitization and opioid-induced hyperalgesia (OIH) promoted by prolactin (PRL) in females. PRL signals through mutually inhibitory long (PRLR-L) and short (PRLR-S) receptor isoforms, and PRLR-S activation induces neuronal excitability. PRL and PRLR expression were higher in females. CRISPR-mediated editing of PRLR-L promoted nociceptor sensitization and allodynia in naïve, uninjured female mice that depended on circulating PRL. Opioids, but not trauma-induced nerve injury, decreased PRLR-L promoting OIH through activation of PRLR-S in female mice. Deletion of both PRLR-L and PRLR-S (total PRLR) prevented, whereas PRLR-L overexpression rescued established OIH selectively in females. Inhibition of circulating PRL with cabergoline, a dopamine D2 agonist, up-regulated PRLR-L and prevented OIH only in females. The PRLR-L isoform therefore confers protection against PRL-promoted pain in females. Limiting PRL/PRLR-S signaling pharmacologically or with gene therapies targeting the PRLR may be effective for reducing pain in a female-selective manner.

Learn More >

Granulocyte-macrophage colony stimulating factor as an indirect mediator of nociceptor activation and pain.

The interaction between the immune system and the nervous system has been at the centre of multiple research studies in recent years. While the role played by cytokines as neuronal mediators is no longer contested, the mechanisms by which cytokines modulate pain processing remain to be elucidated. In this study, we have analysed the involvement of Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) in nociceptor activation in male and female mice. Previous studies have suggested GM-CSF might directly activate neurons. However, here we established the absence of a functional GM-CSF receptor in murine nociceptors, and suggest an indirect mechanism of action, via immune cells. We report that GM-CSF applied directly to magnetically purified nociceptors does not induce any transcriptional changes in nociceptive genes. In contrast, conditioned medium from GM-CSF-treated murine macrophages was able to drive nociceptor transcription. We also found that conditioned medium from nociceptors treated with the well-established pain mediator, Nerve Growth Factor (NGF), could also modify macrophage gene transcription, providing further evidence for a bidirectional crosstalk.The interaction of the immune system and the nervous system is known to play an important role in the development and maintenance of chronic pain disorders. Elucidating the mechanisms of these interactions is an important step towards understanding, and therefore treating, chronic pain disorders. This study provides evidence for a two-way cross talk between macrophages and nociceptors in the peripheral nervous system which may contribute to the sensitization of nociceptors by cytokines in pain development.

Learn More >

Aldosterone Synthase in Peripheral Sensory Neurons Contributes to Mechanical Hypersensitivity during Local Inflammation in Rats.

Aldosterone is believed to be synthesized exclusively in the adrenal gland through the processing enzyme aldosterone synthaseMineralocorticoid receptors are predominantly expressed in peripheral nociceptive neurons whose activation leads to increased neuronal excitability and mechanical sensitivity WHAT THIS ARTICLE TELLS US THAT IS NEW: Extra-adrenal production of aldosterone by aldosterone synthase within peripheral sensory neurons contributes to ongoing mechanical hypersensitivity via intrinsic activation of neuronal mineralocorticoid receptorsIntrathecally-applied aldosterone synthase inhibitor reduced aldosterone content in peripheral sensory neurons and subsequently attenuated enhanced mechanical hypersensitivity resulting from local inflammation BACKGROUND:: Recent emerging evidence suggests that extra-adrenal synthesis of aldosterone occurs (e.g., within the failing heart and in certain brain areas). In this study, the authors investigated evidence for a local endogenous aldosterone production through its key processing enzyme aldosterone synthase within peripheral nociceptive neurons.

Learn More >

Activation and Signaling Mechanism Revealed by Cannabinoid Receptor-G Complex Structures.

Human endocannabinoid systems modulate multiple physiological processes mainly through the activation of cannabinoid receptors CB1 and CB2. Their high sequence similarity, low agonist selectivity, and lack of activation and G protein-coupling knowledge have hindered the development of therapeutic applications. Importantly, missing structural information has significantly held back the development of promising CB2-selective agonist drugs for treating inflammatory and neuropathic pain without the psychoactivity of CB1. Here, we report the cryoelectron microscopy structures of synthetic cannabinoid-bound CB2 and CB1 in complex with G, as well as agonist-bound CB2 crystal structure. Of important scientific and therapeutic benefit, our results reveal a diverse activation and signaling mechanism, the structural basis of CB2-selective agonists design, and the unexpected interaction of cholesterol with CB1, suggestive of its endogenous allosteric modulating role.

Learn More >

Cryo-EM Structure of the Human Cannabinoid Receptor CB2-G Signaling Complex.

Drugs selectively targeting CB2 hold promise for treating neurodegenerative disorders, inflammation, and pain while avoiding psychotropic side effects mediated by CB1. The mechanisms underlying CB2 activation and signaling are poorly understood but critical for drug design. Here we report the cryo-EM structure of the human CB2-G signaling complex bound to the agonist WIN 55,212-2. The 3D structure reveals the binding mode of WIN 55,212-2 and structural determinants for distinguishing CB2 agonists from antagonists, which are supported by a pair of rationally designed agonist and antagonist. Further structural analyses with computational docking results uncover the differences between CB2 and CB1 in receptor activation, ligand recognition, and G coupling. These findings are expected to facilitate rational structure-based discovery of drugs targeting the cannabinoid system.

Learn More >

International Brain Initiative: An Innovative Framework for Coordinated Global Brain Research Efforts.

The International Brain Initiative (IBI) has been established to coordinate efforts across existing and emerging national and regional brain initiatives. This NeuroView describes how to be involved and the new opportunities for global collaboration that are emerging between scientists, scientific societies, funders, industry, government, and society.

Learn More >

Low-dose interleukin-2 reverses behavioral sensitization in multiple mouse models of headache disorders.

Headache disorders are highly prevalent and debilitating, with limited treatment options. Previous studies indicate that many pro-inflammatory immune cells contribute to headache pathophysiology. Given the well-recognized role of regulatory T (Treg) cells in maintaining immune homeostasis, we hypothesized that enhancing Treg function may be effective to treat multiple headache disorders. In a mouse model of chronic migraine, we observed that repeated nitroglycerin (NTG, a reliable trigger of migraine in patients) administration doubled the number of CD3 T cells in the trigeminal ganglia without altering the number of Treg cells, suggesting a deficiency in Treg-mediated immune homeostasis. We treated mice with low-dose interleukin-2 (ld-IL2) to preferentially expand and activate endogenous Treg cells. This not only prevented the development of NTG-induced persistent sensitization, but also completely reversed the established facial skin hyper-sensitivity resulting from repeated NTG administration. The effect of ld-IL2 was independent of mouse sex and/or strain. Importantly, ld-IL2 treatment did not alter basal nociceptive responses, and repeated usage did not induce tolerance. The therapeutic effect of ld-IL2 was abolished by Treg depletion and was recapitulated by Treg adoptive transfer. Furthermore, treating mice with ld-IL2 1-7 days after mild traumatic brain injury effectively prevented as well as reversed the development of behaviors related to acute and chronic post-traumatic headache. In a model of medication overuse headache, Ld-IL2 completely reversed the cutaneous hyper-sensitivity induced by repeated administration of sumatriptan. Collectively, the present study identifies ld-IL2 as a promising prophylactic for multiple headache disorders with a mechanism distinct from the existing treatment options.

Learn More >

My body is not working right: a cognitive behavioral model of body image and chronic pain.

Learn More >

Opioid prescribing patterns among medical providers in the United States, 2003-17: retrospective, observational study.

To examine the distribution and patterns of opioid prescribing in the United States.

Learn More >

AAAPT Diagnostic Criteria for Acute Abdominal and Peritoneal Pain After Surgery.

Abdominal and peritoneal pain after surgery is common and burdensome, yet the lack of standardized diagnostic criteria for this type of acute pain impedes basic, translational, and clinical investigations. The collaborative effort among the Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks (ACTTION), American Pain Society (APS), and American Academy of Pain Medicine (AAPM) Pain Taxonomy (AAAPT) provides a systematic framework to classify acute painful conditions. Using this framework, a multidisciplinary working group reviewed the literature and developed core diagnostic criteria for acute abdominal and peritoneal pain after surgery. In this report, we apply the proposed AAAPT framework to four prototypical surgical procedures resulting in abdominal and peritoneal pain as examples: cesarean delivery, cholecystectomy, colorectal surgical procedures, and pancreas resection. These diagnostic criteria address the three most common surgical procedures performed in the United States, capture diverse surgical approaches, and may also be applied to other surgical procedures resulting in abdominal and peritoneal pain. Additional investigation regarding the validity and reliability of this framework will facilitate its adoption in research that advances our comprehension of mechanisms, deliver better treatments, and help prevent the transition of acute to chronic pain after surgery in the abdominal and peritoneal region. Perspective: Using AAAPT pain taxonomy, we present key diagnostic criteria for acute abdominal and peritoneal pain after surgery. We provide a systematic classification using five dimensions for abdominal and peritoneal pain that occurs after surgery, in addition to four specific surgical procedures: cesarean delivery, cholecystectomy, colorectal surgical procedures, and pancreas resection.

Learn More >

Evolution of Analgesic Tolerance and Opioid-Induced Hyperalgesia over 6 months: Double-blind randomized trial incorporating experimental pain models.

Contributors to the ongoing epidemic of prescription opioid abuse, addiction, and death include opioid tolerance, withdrawal symptoms, and possibly opioid-induced hyperalgesia (OIH). Thirty stable chronic non-malignant pain patients entered a six-month long, randomized, double-blind, dose-response, two-center trial of the potent opioid levorphanol, conducted over a decade ago during an era of permissive opioid prescribing. Eleven were taking no opioids at study entry and eleven were taking between 35-122 morphine equivalents (MEQ). Five weeks titration preceded twenty weeks stable dosing. Tolerance and OIH were inferred individually based on chronic pain ratings, Brief Pain Inventory scores, and results of the Brief Thermal Sensitization (BTS) model at five opioid dosing sessions. Seventeen patients completed. The average final daily opioid dose was 132; range 14-300; average addition 105 MEQ. After observed dosing, the BTS area of hyperalgesia changed minimally but the painfulness of skin heating was reduced. Weekly 0-100 VAS pain ratings (average 64 at study entry, 48 at end titration, 45 at end stable dosing) decreased a median 19%, but eight completed with higher VAS ratings. Three completers had evidence of both tolerance and hyperalgesia. A fully-powered trial similar to this feasibility study is ethically questionable. A large-scale pragmatic trial is more realistic. Trial Registration: NCT00275249 Evolution of Analgesic Tolerance With Opioids Perspective: A double-blind, six-month, high-dose opioid feasibility trial, completed years ago, provides critically important data for clinically defining analgesic tolerance and opioid-induced hyperalgesia (OIH). Overall benefit was small, and 18% of patients had evidence of both tolerance and OIH. Future work requires a different approach than a classic RCT design.

Learn More >

SIRT1 decreases emotional pain vulnerability with associated CaMKIIα deacetylation in central amygdala.

Emotional disorders are common comorbid conditions that further exacerbate the severity and chronicity of chronic pain. However, individuals show considerable vulnerability to developing chronic pain under similar pain conditions. In this study on male rat and mouse models of chronic neuropathic pain, we identify the histone deacetylase SIRT1 in central amygdala as a key epigenetic regulator that controls the development of comorbid emotional disorders underlying the individual vulnerability to chronic pain. We found that animals that were vulnerable to developing behaviors of anxiety and depression under the pain condition displayed reduced SIRT1 protein in central amygdala, but not those animals resistant to the emotional disorders. Viral overexpression of local SIRT1 reversed this vulnerability, but viral knockdown of local SIRT1 mimicked the pain effect, eliciting the pain vulnerability in pain-free animals. The SIRT1 action was associated with CaMKIIα downregulation and deacetylation of histone H3 lysine 9 at the promoter. These results suggest that, by transcriptional repression of in central amygdala, SIRT1 functions to guard against the emotional pain vulnerability under chronic pain conditions. This study indicates that SIRT1 may serve as a potential therapeutic molecule for individualized treatment of chronic pain with vulnerable emotional disorders.Chronic pain is a prevalent neurological disease with no effective treatment at present. Pain patients display considerably variable vulnerability to developing chronic pain, indicating individual-based molecular mechanisms underlying the pain vulnerability, which is hardly addressed in current preclinical research. In this study, we have identified the histone deacetylase Sirtuin 1 (SIRT1) as a key regulator that controls this pain vulnerability. This study reveals that the SIRT1–CaMKIIaα pathway in central amygdala acts as an epigenetic mechanism that guards against the development of comorbid emotional disorders under chronic pain, and that its dysfunction causes increased vulnerability to developing chronic pain. These findings suggest that SIRT1 activators may be used in a novel therapeutic approach for individual-based treatment of chronic pain.

Learn More >

The orphan receptor GPR88 blunts the signaling of opioid receptors and multiple striatal GPCRs.

GPR88 is an orphan G protein coupled receptor (GPCR) considered as a promising therapeutic target for neuropsychiatric disorders; its pharmacology, however, remains scarcely understood. Based on our previous report of increased delta opioid receptor activity in null mice, we investigated the impact of GPR88 co-expression on the signaling of opioid receptors and revealed that GPR88 inhibits the activation of both their G protein- and b-arrestin-dependent signaling pathways. In knockout mice, morphine-induced locomotor sensitization, withdrawal and supra-spinal analgesia were facilitated, consistent with a tonic inhibitory action of GPR88 on µOR signaling. We then explored GPR88 interactions with more striatal versus non-neuronal GPCRs, and revealed that GPR88 can decrease the G protein-dependent signaling of most receptors in close proximity, but impedes b-arrestin recruitment by all receptors tested. Our study unravels an unsuspected buffering role of GPR88 expression on GPCR signaling, with intriguing consequences for opioid and striatal functions.

Learn More >

Intra-epidermal nerve endings progress within keratinocyte cytoplasmic tunnels in normal human skin.

Intra-epidermal nerve endings, responsible for cutaneous perception of temperature, pain and itch, are conventionally described as passing freely between keratinocytes, from the basal to the granular layers of the epidermis. However, the recent discovery of keratinocyte contribution to cutaneous nociception implies that their anatomical relationships are much more intimate than what has been described so far. By studying human skin biopsies in confocal laser-scanning microscopy, we show that intra-epidermal nerve endings are not only closely apposed to keratinocytes, but can also be enwrapped by keratinocyte cytoplasms over their entire circumference and thus progress within keratinocyte tunnels. As keratinocytes must activate intra-epidermal nerve endings to transduce nociceptive information, these findings may help understanding the interactions between the keratinocytes and nervous system. The discovery of these nerve portions progressing in keratinocyte tunnels is a strong argument to consider that contacts between epidermal keratinocytes and intra-epidermal nerve endings are not incidental and argues for the existence of specific and rapid paracrine communication from keratinocytes to sensory neurons.

Learn More >

Histone methyltransferase G9a diminishes expression of cannabinoid CB1 receptors in primary sensory neurons in neuropathic pain.

Type-1 cannabinoid receptors (CB1Rs) are expressed in the dorsal root ganglion (DRG) and contribute to the analgesic effect of cannabinoids. However, the epigenetic mechanism regulating the expression of CB1Rs in neuropathic pain is unknown. G9a (encoded by the Ehmt2 gene), a histone 3 at lysine 9 (H3K9) methyltransferase, is a key chromatin regulator responsible for gene silencing. In this study, we determined G9a's role in regulating CB1R expression in the DRG and in CB1R-mediated analgesic effects in an animal model of neuropathic pain. We show that nerve injury profoundly reduces mRNA levels CB1Rs but increases the expression of CB2 receptors in the rat DRG. Chromatin-immunoprecipitation results indicated increased enrichment of H3K9me2, a G9a-catalyzed repressive histone mark, at the promoter regions of the CB1R genes. G9a inhibition in nerve-injured rats not only upregulates CB1R expression level in the DRG but also potentiated the analgesic effect of a CB1R agonist on nerve injury-induced pain hypersensitivity. Furthermore, in mice lacking Ehmt2 in DRG neurons, nerve injury failed to reduce CB1R expression in the DRG and to decrease the analgesic effect of the CB1R agonist. Moreover, nerve injury diminished the inhibitory effect of the CB1R agonist on synaptic glutamate release from primary afferent nerves to spinal cord dorsal horn neurons in wild-type mice, but not in mice lacking Ehmt2 in DRG neurons. Our findings reveal that nerve injury diminishes the analgesic effect of CB1R agonists through G9a-mediated CB1R downregulation in primary sensory neurons.

Learn More >

Hippocalcin-like 4, a neural calcium sensor, has a limited contribution to pain and itch processing.

Calcium binding proteins are expressed throughout the central and peripheral nervous system and disruption of their activity has major consequences in a wide array of cellular processes, including transmission of nociceptive signals that are processed at the level of the spinal cord. We previously reported that the calcium binding protein, hippocalcin-like 4 (Hpcal4), is heavily expressed in interneurons of the superficial dorsal horn, and that its expression is significantly downregulated in a TR4 mutant mouse model that exhibits major pain and itch deficits due to loss of a subpopulation of excitatory interneurons. That finding suggested that Hpcal4 may be a contributor to the behavioral phenotype of the TR4 mutant mouse. To address this question, here we investigated the behavioral consequences of global deletion of Hpcal4 in a battery of acute and persistent pain and itch tests. Unexpectedly, with the exception of a mild reduction in acute baseline thermal responses, Hpcal4-deficient mice exhibit no major deficits in pain or itch responses, under normal conditions or in the setting of tissue or nerve injury. Taken together, our results indicate that the neural calcium sensor Hpcal4 likely makes a limited contribution to pain and itch processing.

Learn More >

Chronic pain as a neglected core symptom in mitochondrial diseases.

Learn More >

Data-science-based subgroup analysis of persistent pain during 3 years after breast cancer surgery: A prospective cohort study.

Persistent pain extending beyond 6 months after breast cancer surgery when adjuvant therapies have ended is a recognised phenomenon. The evolution of postsurgery pain is therefore of interest for future patient management in terms of possible prognoses for distinct groups of patients to enable better patient information.

Learn More >

Serlopitant for Psoriatic Pruritus: a Phase 2 Randomized, Double-Blind, Placebo-Controlled Clinical Trial.

Pruritus, a common symptom of psoriasis, negatively impacts quality of life; however, treatment of lesional skin does not consistently alleviate psoriatic itch.

Learn More >

Dorsal Root Ganglia Homeobox downregulation in primary sensory neurons contributes to neuropathic pain in rats.

Learn More >

Mindfulness as one component of an integrative approach to migraine treatment in clinical practice: companion editorial.

Learn More >

Rapid uptake of sumatriptan into the brain: An ongoing question of blood-brain barrier permeability.

Learn More >

Nociceptor-Mast Cell Sensory Clusters as Regulators of Skin Homeostasis.

Recent studies revealed the existence of unique functional links between mast cells and nociceptors in the skin. Here, we propose that mast cells and nociceptors form a single regulatory unit in both physiology and disease. In this model, MrgprB2/X2 signaling is a primary mechanism by which mast cells functionally interact with nociceptors to form specialized neuroimmune clusters that regulate pain, inflammation, and itch.

Learn More >

The effect of spontaneous osteoarthritis on conditioned pain modulation in the canine model.

Endogenous Pain Modulation (EPM) impairment is a significant contributor to chronic pain. Conditioned pain modulation (CPM) testing assesses EPM function. Osteoarthritic (OA) dogs are good translational models, but CPM has not been explored. Our aim was to assess EPM impairment in OA dogs compared to controls using CPM. We hypothesized that CPM testing would demonstrate EPM impairment in OA dogs compared to controls. Dogs with stifle/hip OA and demographically-matched controls were recruited. The pre-conditioning test stimulus, using mechanical/thermal quantitative sensory testing (MQST or TQST), were performed at the metatarsus. A 22N blunt probe (conditioning stimulus) was applied to the contralateral antebrachium for 2 minutes, followed by MQST or TQST (post-conditioning test stimulus). The threshold changes from pre to post-conditioning (∆MQST and ∆TQST) were compared between OA and control dogs. Twenty-four client-owned dogs (OA, n = 11; controls, n = 13) were recruited. The ∆MQST(p < 0.001) and ∆TQST(p < 0.001) increased in control dogs but not OA dogs (∆MQST p = 0.65; ∆TQST p = 0.76). Both ∆MQST(p < 0.001) and ∆TQST(p < 0.001) were different between the OA and control groups. These are the first data showing that EPM impairment is associated with canine OA pain. The spontaneous OA dog model may be used to test drugs that normalize EPM function.

Learn More >

Redox regulation of soluble epoxide hydroxylase does not affect pain behavior in mice.

Signaling mediated by soluble epoxide hydrolase (sEH) has been reported to play an important role in pain processing. Previous studies revealed that sEH activity is inhibited by specific binding of electrophiles to a redox-sensitive thiol (Cys521) adjacent to the catalytic center of the hydrolase. Here, we investigated if this redox-dependent modification of sEH is involved in pain processing using "redox-dead" knockin-mice (sEH-KI), in which the redox-sensitive cysteine is replaced by serine. However, behavioral characterization of sEH-KI mice in various animal models revealed that acute nociceptive, inflammatory, neuropathic, and visceral pain processing is not altered in sEH-KI mice. Thus, our results suggest that redox-dependent modifications of sEH are not critically involved in endogenous pain signaling in mice.

Learn More >

PAR2 mediates itch via TRPV3 signaling in keratinocytes.

Animal studies have suggested that transient receptor potential (TRP) ion channels and G protein-coupled receptors (GPCRs) play important roles in itch transmission. TRPV3 gain-of-function mutations have been identified in patients with Olmsted syndrome which is associated with severe pruritus. However, the mechanisms causing itch remain poorly understood. Here, we show that keratinocytes lacking TRPV3 impair the function of protease activated receptor 2 (PAR2), resulting in reduced neuronal activation and scratching behavior in response to PAR2 agonists. Moreover, we show that TRPV3 and PAR2 were upregulated in skin biopsies from patients and mice with atopic dermatitis (AD), whereas their inhibition attenuated scratching and inflammatory responses in mouse AD models. Taken together, these results reveal a previously unrecognized link between TRPV3 and PAR2 in keratinocytes to convey itch information and suggest that a blockade of PAR2 or TRPV3 individually or both may serve as a potential approach for antipruritic therapy in AD.

Learn More >

Ephrin-B2 signaling in the spinal cord as a player in post-inflammatory and stress-induced visceral hypersensitivity.

Ephrin-B2/EphB receptor signaling contributes to persistent pain states such as postinflammatory and neuropathic pain. Visceral hypersensitivity (VHS) is a major mechanism underlying abdominal pain in patients with irritable bowel syndrome (IBS) and inflammatory bowel diseases (IBD) in remission, but the underlying pathophysiology remains unclear. Here, we evaluated the spinal ephrin-B2/EphB pathway in VHS in 2 murine models of VHS, that is, postinflammatory TNBS colitis and maternal separation (MS).

Learn More >

Calcitonin gene-related peptide (CGRP): Role in migraine pathophysiology and therapeutic targeting.

: The neuropeptide calcitonin gene-related peptide (CGRP) is recognized as a critical player in migraine pathophysiology. Excitement has grown regarding CGRP because of the development and clinical testing of drugs targeting CGRP or its receptor. While these drugs alleviate migraine symptoms in half of patients, the remaining unresponsive half of this population creates an impetus to address unanswered questions that exist in this field.: We describe the role of CGRP in migraine pathophysiology and CGRP-targeted therapeutics currently under development and in use. We also discuss how a second CGRP receptor may provide a new therapeutic target.: CGRP targeting drugs have shown a remarkable safety profile. We speculate that this may reflect the redundancy of peptides within the CGRP family and a second CGRP receptor that may compensate for reduced CGRP activity. Furthermore, we propose that an inherent safety feature of peptide-blocking antibodies is attributed to the fundamental nature of peptide release, which occurs as a large bolus in short bursts of volume transmission. These facts support the development of more refined CGRP therapeutic drugs, as well as drugs that target other neuropeptides. We believe that the future of migraine research is bright with exciting advances on the horizon.

Learn More >

Effects of external low intensity focused ultrasound on electrophysiological changes in vivo in a rodent model of common peroneal nerve injury.

Non-invasive treatment methods for neuropathic pain are lacking. We assess how modulatory low intensity focused ultrasound (liFUS) at the L5 dorsal root ganglion (DRG) affects behavioral responses and sensory nerve action potentials (SNAPs) in a common peroneal nerve injury (CPNI) model. Rats were assessed for mechanical and thermal responses using Von Frey filaments (VFF) and the hot plate test (HPT) following CPNI surgery. Testing was repeated 24 h after liFUS treatment. Significant increases in mechanical and thermal sensory thresholds were seen post-liFUS treatment, indicating a reduction in sensitivity to pain (p < 0.0001, p = 0.02, respectively). Animals who received CPNI surgery had significant increases in SNAP latencies compared to sham CPNI surgery animals (p = 0.0003) before liFUS treatment. LiFUS induced significant reductions in SNAP latency in both CPNI liFUS and sham CPNI liFUS cohorts, for up to 35 min post treatment. No changes were seen in SNAP amplitude and there was no evidence of neuronal degeneration 24 h after liFUS treatment, showing that liFUS did not damage the tissue being modulated. This is the first in vivo study of the impact of liFUS on peripheral nerve electrophysiology in a model of chronic pain. Perspective: This study demonstrates the effects of liFUS on peripheral nerve electrophysiology in vivo. We found that external liFUS treatment results in transient decreased latency in common peroneal nerve (CPN) sensory nerve action potentials (SNAPs) with no change in signal amplitude.

Learn More >

Perturbing the activity of the superior temporal gyrus during pain encoding prevents the exaggeration of pain memories: a virtual lesion study using single-pulse transcranial magnetic stimulation.

Past studies have shown that pain memories are often inaccurate, a phenomenon known as mnemonic pain bias. Pain memories are thought to play an important role on how future pain is felt. Recent evidence from our laboratory suggests that individuals who exaggerate past pain display increased superior temporal gyrus (STG) and parahippocampal gyrus (PHG) activity during the encoding of experimental painful stimulations, suggesting that these brain structures play an important role in pain memories.

Learn More >

Resveratrol alleviates temporomandibular joint inflammatory pain by recovering disturbed gut microbiota.

Patients with temporomandibular disorders (TMDs) often experience persistent facial pain. However, the treatment of TMD pain is still inadequate. In recent years, the disturbance of gut microbiota has been shown to play an important role in the pathogenesis of different neurological diseases including chronic pain. In the present study, we investigated the involvement of gut microbiota in the development of temporomandibular joint (TMJ) inflammation. Intra-temporomandibular joint injection of complete Freund's adjuvant (CFA) was employed to induce TMJ inflammation. Resveratrol (RSV), a natural bioactive compound with anti-inflammatory property, was used to treat the CFA-induced TMJ inflammation. We observed that CFA injection not only induces persistent joint pain, but also causes the reduction of short-chain fatty acids (SCFAs, including acetic acid, propionic acid and butyric acid) in the gut as well as decreases relevant gut bacteria Bacteroidetes and Lachnospiraceae. Interestingly, systemic administration of RSV (i.p.) dose-dependently inhibits CFA-induced TMJ inflammation, reverses CFA-caused reduction of SCFAs and these gut bacteria. Moreover, CFA injection causes blood-brain barrier (BBB) leakage, activates microglia and enhances tumor necrosis factor alpha (TNFα) release in the spinal trigeminal nucleus caudalis (Sp5C). The RSV treatment restores the BBB integrity, inhibits microglial activation and decreases the release of TNFα in the Sp5C. Furthermore, fecal microbiota transplantation with feces from RSV-treated mice significantly diminishes the CFA-induced TMJ inflammation. Taken together, our results suggest that gut microbiome perturbation is critical for the development of TMJ inflammation and that recovering gut microbiome to normal levels could be a new therapeutic approach for treating such pain.

Learn More >

In silico screening of GMQ-like compounds reveals guanabenz and sephin1 as new allosteric modulators of acid-sensing ion channel 3.

Acid-sensing ion channels (ASICs) are voltage-independent cation channels that detect decreases in extracellular pH. Dysregulation of ASICs underpins a number of pathologies. Of particular interest is ASIC3, which is recognised as a key sensor of acid-induced pain and is important in the establishment of pain arising from inflammatory conditions, such as rheumatoid arthritis. Thus, the identification of new ASIC3 modulators and the mechanistic understanding of how these compounds modulate ASIC3 could be important for the development of new strategies to counteract the detrimental effects of dysregulated ASIC3 activity in inflammation. Here, we report the identification of novel ASIC3 modulators based on the ASIC3 agonist, 2-guanidine-4-methylquinazoline (GMQ). Through a GMQ-guided in silico screening of Food and Drug administration (FDA)-approved drugs, 5 compounds were selected and tested for their modulation of rat ASIC3 (rASIC3) using whole-cell patch-clamp electrophysiology. Of the chosen drugs, guanabenz (GBZ), an α-adrenoceptor agonist, produced similar effects to GMQ on rASIC3, activating the channel at physiological pH (pH 7.4) and potentiating its response to mild acidic (pH 7) stimuli. Sephin1, a GBZ derivative that lacks α-adrenoceptor activity, has been proposed to act as a selective inhibitor of a regulatory subunit of the stress-induced protein phosphatase 1 (PPP1R15A) with promising therapeutic potential for the treatment of multiple sclerosis. However, we found that like GBZ, sephin1 activates rASIC3 at pH 7.4 and potentiates its response to acidic stimulation (pH 7), i.e. sephin1 is a novel modulator of rASIC3. Furthermore, docking experiments showed that, like GMQ, GBZ and sephin1 likely interact with the nonproton ligand sensor domain of rASIC3. Overall, these data demonstrate the utility of computational analysis for identifying novel ASIC3 modulators, which can be validated with electrophysiological analysis and may lead to the development of better compounds for targeting ASIC3 in the treatment of inflammatory conditions.

Learn More >

Differences in Gene Expression of Endogenous Opioid Peptide Precursor, Cannabinoid 1 and 2 Receptors and Interleukin Beta in Peripheral Blood Mononuclear Cells of Patients With Refractory Failed Back Surgery Syndrome Treated With Spinal Cord Stimulation:

The use of spinal cord stimulation for patients with failed back surgery syndrome (FBSS) is very common. In order to better understand the mechanisms of action of spinal cord stimulation (SCS), our aim was to determine potential changes in relative gene and protein expression in the peripheral blood mononuclear cells (PBMCs) of patients as potential biomarkers of disease outcomes and potential new targets for therapy.

Learn More >

Associations between migraine occurrence and the effect of aura, age at onset, family history, and sex: A cross-sectional study.

The relationships between family history, sex, age at onset, and migraine occurrence have been documented. However, the associations between these factors across different sexes and subgroups of patients have yet to be elucidated. This study evaluated the association between family history and migraine in male and female patients experiencing episodic and chronic migraine with and without aura.

Learn More >

Neural shutdown under stress: an evolutionary perspective on spreading depolarization.

Neural function depends on maintaining cellular membrane potentials as the basis for electrical signaling. Yet in mammals and insects, neuronal and glial membrane potentials can reversibly depolarize to zero, shutting down neural function by the process of spreading depolarization (SD) that collapses the ion gradients across membranes. SD is not evident in all metazoan taxa with centralized nervous systems. We consider the occurrence and similarities of SD in different animals and suggest that it is an emergent property of nervous systems that have evolved to control complex behaviours requiring energetically expensive, rapid information processing in a tightly regulated extracellular environment. Whether SD is beneficial or not in mammals remains an open question. However, in insects it is associated with the response to harsh environments and may provide an energetic advantage that improves the chances of survival. The remarkable similarity of SD in diverse taxa supports a model systems approach to understanding the mechanistic underpinning of human neuropathology associated with migraine, stroke and traumatic brain injury.

Learn More >

Oxidative Stress Contributes to Hyperalgesia in Osteoporotic Mice.

Chronic pain is one of the most common complications of postmenopausal osteoporosis. Since oxidative stress is involved in the pathogenesis of postmenopausal osteoporosis, we explored whether oxidative stress contributes to postmenopausal osteoporotic pain.

Learn More >

Rediscovery of Ceruletide, a CCK Agonist, as an Analgesic Drug.

Ceruletide (CRL) is a decapeptide, originating from the skin of a tropical frog, and is many times more potent that cholecystokinin (CCK) in a number of assays. The compound was first isolated and characterized around 50 years ago, and its analgesic properties were subsequently identified. Since the 1980s it has been available in the clinic as a parenteral solution and is used as a diagnostic tool to characterize pancreas and gall bladder malfunctions. Its analgesic properties were evaluated in a number of indications: cancer pain, burns, colic pains and migraine. Preclinically, CRL reduces pain in low microgram dose range and promotes clear and long-lasting analgesic activity in nanograms when applied centrally. CCK is amongst the most widely expressed neuropeptides in the brain. CCK-induced analgesic effects in response to persistent and inflammatory pain have recently been associated with CCK2 receptor signaling. CRL, a potent CCK agonist, might be worthwhile to rediscover as a putative analgesic drug and could represent a potential analgesic intrathecal strategy to patients with cancer-related pain.

Learn More >

No Differences in the Prevalence and Intensity of Chronic Postsurgical Pain Between Laparoscopic Hysterectomy and Abdominal Hysterectomy: A Prospective Study.

To compare the prevalence and characteristics of chronic postsurgical pain (CPSP) between laparoscopic hysterectomy (LH) and abdominal hysterectomy (AH) groups 3, 6, and 12 months after surgery, and to assess the impact of pain on the activities of daily living (ADL) of patients.

Learn More >

Total physical activity and risk of chronic low back and knee pain in middle-aged and elderly Japanese people: the Murakami Cohort Study.

Specific components of physical activity, such as vigorous exercise and heavy occupational work, are known to increase the risk of chronic low back pain (CLBP) and knee pain (CKP), but impacts of other components are less known. This study aimed to assess the relationship between total physical activity and risk of CLBP and CKP from a public health perspective.

Learn More >

The Bed Nucleus of the Stria Terminalis as a Brain Correlate of Psychological Inflexibility in Fibromyalgia.

This study explored the brain structural correlates of psychological flexibility (PF) as measured with the Psychological Inflexibility in Pain Scale (PIPS) in patients with fibromyalgia (FM). Structural magnetic resonance imaging data from 47 FM patients were used to identify Gray Matter Volume (GMV) alterations related to PIPS scores. Brain GMV clusters related to PIPS were then correlated with clinical and cognitive variables to further explore how emerged brain clusters were intertwined with FM symptomatology. Longitudinal changes in PIPS-related brain clusters values were assessed by studying pre-post data from 30 patients (15 allocated to a mindfulness-based stress reduction (MBSR) program and 15 to treatment-as-usual). Changes in PIPS-related brain clusters were also explored in participants showing greater/lower longitudinal changes in PIPS scores. PIPS scores were positively associated with GMV in a bilateral cluster in the ventral part of the bed nucleus of the stria terminalis (BNST). Significant associations between BNST cluster with functional impairment, depressive symptomatology, perceived stress and the nonjudging mindfulness facet were observed. Participants reporting greater pre-post increases in PIPS scores showed greater increases in BNST cluster values. These findings contribute to the understanding on the neurobiological bases of PF in FM and encourage further explorations of the role of the BNST in chronic pain.

Learn More >

Three-dimensional neuroanatomy of the intra-epidermal nervous system.

Intra-epidermal nerve fibers (IENFs) are presumed to comprise mainly of itch-transmitting nerve fibers, and variations in their density have been studied in itch disorders; epidermal nerve fiber density is also a criterion in diagnosing small fiber neuropathy in clinical neurological practice. IENFs are typically identified with 2-dimensional (2D) histological slides, but 2D sections do not accurately represent nerves, which branch out in three-dimensions (3D).

Learn More >

Tumors Provoke Inflammation and Perineural Microlesions at Adjacent Peripheral Nerves.

Cancer-induced pain occurs frequently in patients when tumors or their metastases grow in the proximity of nerves. Although this cancer-induced pain states poses an important therapeutical problem, the underlying pathomechanisms are not understood. Here, we implanted adenocarcinoma, fibrosarcoma and melanoma tumor cells in proximity of the sciatic nerve. All three tumor types caused mechanical hypersensitivity, thermal hyposensitivity and neuronal damage. Surprisingly the onset of the hypersensitivity was independent of physical contact of the nerve with the tumors and did not depend on infiltration of cancer cells in the sciatic nerve. However, macrophages and dendritic cells appeared on the outside of the sciatic nerves with the onset of the hypersensitivity. At the same time point downregulation of perineural tight junction proteins was observed, which was later followed by the appearance of microlesions. Fitting to the changes in the epi-/perineurium, a dramatic decrease of triglycerides and acylcarnitines in the sciatic nerves as well as an altered localization and appearance of epineural adipocytes was seen. In summary, the data show an inflammation at the sciatic nerves as well as an increased perineural and epineural permeability. Thus, interventions aiming to suppress inflammatory processes at the sciatic nerve or preserving peri- and epineural integrity may present new approaches for the treatment of tumor-induced pain.

Learn More >

Rehabilitation for Low Back Pain: A Narrative Review for Managing Pain and Improving Function in Acute and Chronic Conditions.

Low back pain (LBP) is prevalent and may transition into chronic LBP (cLBP) with associated reduced quality of life, pain, and disability. Because cLBP affects a heterogenous population, rehabilitation efforts must be individualized to meet the needs of various patient populations as well as individuals. This narrative review evaluated the many approaches to LBP rehabilitation including treatment-based classifications and specific types of rehabilitation efforts from exercise and physical therapy to spinal manipulation and bracing. Clinicians caring for patients with LBP or cLBP must be aware of the various options to find the right treatment course for each patient. In many cases, with proper patient expectations and care, nonpharmacological options may suffice to manage cLBP. While there is a rightful role for analgesics in the management of LBP, nonpharmacological options should be seriously considered, as they can play an important and health-sustaining role in patient management.

Learn More >

ChrOnic pain self-ManagementMent support with pain science EducatioN and exerCisE (COMMENCE) for people with chronic pain and multiple comorbidities: A randomized controlled trial.

To investigate the effectiveness chronic pain self-management support with pain science education and exercise (COMMENCE) on improving function, pain interference, work status, pain intensity, fatigue, psychological factors associated with pain, health care visits, satisfaction, and perceived change compared to usual care.

Learn More >

Cannabinoids in the descending pain modulatory circuit: Role in inflammation.

The legalization of cannabis in some states has intensified interest in the potential for cannabis and its constituents to lead to novel therapeutics for pain. Our understanding of the cellular mechanisms underlying cannabinoid actions in the brain have lagged behind opioids; however, the current opioid epidemic has also increased attention on the use of cannabinoids as alternatives to opioids for pain, especially chronic pain that requires long-term use. Endogenous cannabinoids are lipid signaling molecules that have complex roles in modulating neuronal function throughout the brain. In this review, we discuss cannabinoid functions in the descending pain modulatory pathway, a brain circuit that integrates cognitive and emotional processing of pain to modulate incoming sensory inputs. In addition, we highlight areas where further studies are necessary to understand cannabinoid regulation of descending pain modulation.

Learn More >

Safety And Efficacy Of The Unique Opioid Buprenorphine For The Treatment Of Chronic Pain.

Chronic pain is associated with decreased quality of life and is one of the most common reasons adults seek medical care, making treatment imperative for many aspects of patient well-being. Chronic pain management typically involves the use of Schedule II full μ-opioid receptor agonists for pain relief; however, the increasing prevalence of opioid addiction is a national crisis that is impacting public health and social and economic welfare. Buprenorphine is a Schedule III partial μ-opioid receptor agonist that is an equally effective but potentially safer treatment option for chronic pain than full μ-opioid receptor agonists. The purpose of this review is to provide an overview of the clinical efficacy and safety of the transdermal and buccal formulations of buprenorphine, which are approved by the Food and Drug Administration for chronic pain, compared with that of extended-release full μ-opioid receptor agonists.

Learn More >

The Association Between the Supply of Nonpharmacologic Providers, Use of Nonpharmacologic Pain Treatments and High-risk Opioid Prescription Patterns Among Medicare Beneficiaries With Persistent Musculoskeletal Pain.

Opioids are prescribed more frequently than nonpharmacologic treatments for persistent musculoskeletal pain (MSP). We estimate the association between the supply of physical therapy (PT) and mental health (MH) providers and early nonpharmacologic service use with high-risk opioid prescriptions among Medicare beneficiaries with persistent MSP.

Learn More >

Attitudes Towards and Management of Opioid-induced Hyperalgesia: A Survey of Chronic Pain Practitioners.

Opioid-induced hyperalgesia (OIH) is a phenomenon whereby opioids increase patients' pain sensitivity, complicating their use in analgesia. We explored practitioners' attitudes towards, and knowledge concerning diagnosis, risk factors, and treatment of OIH.

Learn More >

Lasmiditan: Its Development and Potential Use.

Learn More >

Effects of Intraoperative Low-Dose Ketamine on Persistent Postsurgical Pain after Breast Cancer Surgery: A Prospective, Randomized, Controlled, Double-Blind Study.

Compared to acute postsurgical pain, studies regarding the role of ketamine in persistent postsurgical pain (PPSP) are limited.

Learn More >

Changes in Neuronal Activity in the Anterior Cingulate Cortex and Primary Somatosensory Cortex With Nonlinear Burst and Tonic Spinal Cord Stimulation.

Although nonlinear burst and tonic SCS are believed to treat neuropathic pain via distinct pain pathways, the effectiveness of these modalities on brain activity in vivo has not been investigated. This study compared neuronal firing patterns in the brain after nonlinear burst and tonic SCS in a rat model of painful radiculopathy.

Learn More >

Patient Versus Informal Caregiver Proxy Reports of Pain Interference in Persons With Dementia.

Pain assessment and treatment is challenging among persons with dementia (PWDs). To better understand reports of pain interference, we examined ratings made by PWDs, as well as corresponding ratings about PWDs, as reported by the caregiver. We aimed to assess alignment between and predictors of caregiver and PWD report of pain interference.

Learn More >

Efficacy and safety of galcanezumab for preventive treatment of migraine: a systematic review and meta-analysis.

This meta-analysis aimed to systematically evaluate the effectiveness and safety of galcanezumab in the prophylactic treatment of adult migraine.

Learn More >

Trauma-related guilt and pain among veterans with PTSD.

Despite the well-known co-occurrence of posttraumatic stress disorder (PTSD) and chronic pain, large gaps remain in understanding how these two conditions influence each other. The aim of the present study was to examine the association between trauma-related guilt and pain among veterans with PTSD. Participants were 140 veterans enrolling in treatment for PTSD and alcohol use disorder. Trauma-related guilt was assessed by the trauma-related guilt inventory, including the global guilt, distress, and guilt cognitions scales. Measures of pain included pain severity, pain disability, and fear of pain. Several significant bivariate associations were observed between trauma-related guilt scales and pain outcomes; however, in linear regression models, only the association between thoughts of trauma-related guilt and fear of pain remained statistically significant after controlling for confounding factors. Further, thoughts of trauma-related guilt, specifically thoughts of wrongdoing, partially mediated the association between PTSD severity and fear of pain. Our findings suggest that trauma-related guilt may play a role in the relationship between PTSD and chronic pain. Future research is encouraged to examine thoughts of trauma-related guilt as a potential therapeutic target in the treatment of persons with comorbid PTSD and chronic pain.

Learn More >

Evaluation of opioid discontinuation after non-orthopaedic surgery among chronic opioid users: a population-based cohort study.

Many patients use opioids chronically before surgery; it is unclear if surgery alters the likelihood of ongoing opioid consumption in these patients.

Learn More >

Synaptotagmin 1 Is Involved in Neuropathic Pain and Electroacupuncture-Mediated Analgesic Effect.

Numerous studies have verified that electroacupuncture (EA) can relieve neuropathic pain through a variety of mechanisms. Synaptotagmin 1 (Syt-1), a synaptic vesicle protein for regulating exocytosis of neurotransmitters, was found to be affected by EA stimulation. However, the roles of Syt-1 in neuropathic pain and EA-induced analgesic effect remain unclear. Here, the effect of Syt-1 on nociception was assessed through an antibody blockade, siRNA silencing, and lentivirus-mediated overexpression of spinal Syt-1 in rats with spared nerve injury (SNI). EA was used for stimulating bilateral "Sanjinjiao" and "Zusanli" acupoints of the SNI rats to evaluate its effect on nociceptive thresholds and spinal Syt-1 expression. The mechanically and thermally nociceptive behaviors were assessed with paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) at different temperatures, respectively, at day 0, 7, 8, 14, and 20. Syt-1 mRNA and protein levels were determined with qRT-PCR and Western blot, respectively, and its distribution was observed with the immunohistochemistry method. The results demonstrated Syt-1 antibody blockade and siRNA silencing increased ipsilateral PWTs and PWLs of SNI rats, while Syt-1 overexpression decreased ipsilateral PWTs and PWLs of rats. EA significantly attenuated nociceptive behaviors and down-regulated spinal Syt-1 protein levels (especially in laminae I-II), which were reversed by Syt-1 overexpression. Our findings firstly indicate that Syt-1 is involved in the development of neuropathic pain and that EA attenuates neuropathic pain, probably through suppressing Syt-1 protein expression in the spinal cord.

Learn More >

Addition of Slowly Repeated Evoked Pain Responses to Clinical Symptoms Enhances Fibromyalgia Diagnostic Accuracy.

Fibromyalgia is a chronic pain syndrome characterized by central sensitization. A novel protocol based on slowly repeated evoked pain (SREP) appears to be a useful marker of pain sensitization in fibromyalgia patients. Whether SREP enhances diagnostic accuracy beyond key clinical symptoms that characterize fibromyalgia has not been examined.

Learn More >

Electroacupuncture Inhibits Hyperalgesia by Alleviating Inflammatory Factors in a Rat Model of Migraine.

Acupuncture has a therapeutic effect similar to that of prophylactic drugs and can be considered a treatment option for migraineurs. However, the mechanism of acupuncture treatment's effect on migraine is uncertain. An approach based on anti-inflammatory effects is an important treatment strategy for migraine because non-steroidal anti-inflammatory drugs (NSAIDs) are usually used during migraine attacks. Meningeal inflammation is thought to be responsible for the activation of the trigeminovascular system. Our previous study found that electroacupuncture (EA) decreased neurogenic inflammation mediator expression in the trigeminal ganglion (TG) and alleviated hyperalgesia. The present study examined whether EA would inhibit hyperalgesia by alleviating neurogenic inflammatory factors.

Learn More >

Therapeutic Efficacy and the Impact of the “Dose” Effect of Acupuncture to Treat Sciatica: A Randomized Controlled Pilot Study.

To investigate the required sample size for and feasibility of a full-scale randomized controlled trial examining the impact of the "dose" effect of acupuncture in treating sciatica.

Learn More >

Statins and Neuropathic Pain: A Narrative Review.

The frequently prescribed drug class of statins have pleiotropic effects and have been implicated in neuropathic pain syndromes. This narrative review examines studies of statin-induced neuropathic pain which to date have been conducted only in animal models. However, the pathophysiology of diabetic neuropathy in humans may shed some light on the etiology of neuropathic pain. Statins have exhibited a paradoxical effect in that statins appear to reduce neuropathic pain in animals but have been associated with neuropathic pain in humans. While there are certain postulated mechanisms offering elucidation as to how statins might be associated with neuropathic pain, there is, as the American Heart Association stated, to date no definitive association between statins and neuropathic pain. Statins are important drugs that reduce cardiovascular risk factors and should be prescribed to appropriate patients with these risk factors but some of this population is also at elevated risk for neuropathic pain from other causes.

Learn More >

Bilateral activation of glial cells and cellular distribution of the chemokine CCL2 and its receptor CCR2 in the trigeminal subnucleus caudalis of trigeminal neuropathic pain model.

Glial cells activated by peripheral nerve injury contribute to the induction and maintenance of neuropathic pain by releasing neuromodulating cytokines and chemokines. We investigated the activation of microglia and astrocytes as well as the cellular distribution of the chemokine CCL2 and its receptor CCR2 in the trigeminal subnucleus caudalis (TSC) ipsilateral and contralateral to infraorbital nerve ligature (IONL). The left infraorbital nerve was ligated under aseptic conditions, and sham controls were operated without nerve ligature. Tactile hypersensitivity was significantly increased bilaterally in vibrissal pads of both sham- and IONL-operated animals from day 1 to 7 and tended to normalize in sham controls surviving for 14 days. Activated microglial cells significantly increased bilaterally in the TSC of both sham- and IONL-operated animals with a marked but gradual increase in the ipsilateral TSC from 1 to 7 days followed by a decrease by day 14. In contrast, robust activation of astrocytes was found bilaterally in the TSC of IONL-operated rats from 3 to 14 days with a transient activation in the ipsilateral TSC of sham-operated animals. Cellular distribution of CCL2 varied with survival time. CCL2 immunofluorescence was detected in neurons within 3 days and in astrocytes at later time points. In contrast, CCR2 was found only in astrocytes at all time points with CCR2 intensity being dominant in the ipsilateral TSC. In summary, our results reveal bilateral activation of microglial cells and astrocytes as well as changes in the cellular distribution of CCL2 and its receptor CCR2 in the TSC during the development and maintenance of orofacial neuropathic pain.

Learn More >

Calcitonin Gene-Related Peptide Antagonists for the Prevention of Migraine: Highlights From Pivotal Studies and the Clinical Relevance of This New Drug Class.

To review the new drug class of calcitonin gene-related peptide antagonists (monoclonal antibodies) and their clinical relevance in migraine prophylaxis. A literature search was performed in PubMed (January 2009 to November 2019) using the terms (CGRP), , and for clinical trials and studies. Reports from human studies in English were evaluated for clinical evidence supporting pharmacology, efficacy, and adverse events. Initial pharmacokinetic and preclinical studies were excluded. In chronic and episodic migraine, prophylaxis with injections of monoclonal antibodies antagonizing CGRP reduced monthly migraine days with minimal clinically significant adverse events. In addition, there is evidence supporting efficacy in refractory migraine despite optimal prophylaxis. This is the first target-specific migraine prophylaxis treatment to show efficacy with minimal adverse effects. A higher drug cost is a barrier but is balanced by improved quality of life. Current therapies have limited efficacy and tolerability because of poor side effect profiles. CGRP antagonists represent a shift to more precise migraine treatments. Monoclonal antibodies inhibiting CGRP are effective in migraine prophylaxis with minimal adverse effects. Targeting CGRP is a novel clinical strategy in managing migraine.

Learn More >

The inhibitory effect of Phα1β toxin on diabetic neuropathic pain involves the CXCR4 chemokine receptor.

Diabetic neuropathy is a common cause of painful diabetic neuropathy (PDN). C-X-C chemokine receptor type 4 (CXCR4) expression is increased in peripheral nerve samples from diabetes patients, suggesting a role for CXCR4 in PDN. Therefore, we evaluated the effects of Phα1β, ω-conotoxin MVIIA, and AMD3100 in a model of streptozotocin (STZ)-induced PDN in rodents and naïve model of rats with the activation of the CXCR4/stromal cell-derived factor 1 (SDF-1) signal.

Learn More >

Evidence of the involvement of spinal αB-crystallin in the maintenance of bone cancer pain in rats.

αB-crystallin (CRYAB) is a small heat shock protein that is able to inhibit neuroinflammatory responses under various pathological conditions. Some studies have proven that neuroinflammatory mechanisms play important roles in bone cancer pain (BCP). However, whether CRYAB participates in the maintenance of BCP has not yet been examined.

Learn More >

Variables associated with use of symptomatic medication during a headache attack in individuals with tension-type headache: a European study.

Pharmacological treatment of patients with tension-type headache (TTH) includes symptomatic (acute) and prophylactic (preventive) medication. No previous study has investigated variables associated to symptomatic medication intake in TTH. Our aim was to assess the association of clinical, psychological and neurophysiological outcomes with the use and timing of the use of symptomatic medication in TTH.

Learn More >

Reciprocal Regulatory Interaction between TRPV1 and Kinin B1 Receptor in a Rat Neuropathic Pain Model.

Kinins are mediators of pain and inflammation and evidence suggests that the inducible kinin B1 receptor (B1R) is involved in neuropathic pain (NP). This study investigates whether B1R and TRPV1 are colocalized on nociceptors and/or astrocytes to enable regulatory interaction either directly or through the cytokine pathway (IL-1β, TNF-α) in NP. Sprague Dawley rats were subjected to unilateral partial sciatic nerve ligation (PSNL) and treated from 14 to 21 days post-PSNL with antagonists of B1R (SSR240612, 10 mg·kg, i.p.) or TRPV1 (SB366791, 1 mg·kg, i.p.). The impact of these treatments was assessed on nociceptive behavior and mRNA expression of B1R, TRPV1, TNF-α, and IL-1β. Localization on primary sensory fibers, astrocytes, and microglia was determined by immunofluorescence in the lumbar spinal cord and dorsal root ganglion (DRG). Both antagonists suppressed PSNL-induced thermal hyperalgesia, but only SB366791 blunted mechanical and cold allodynia. SSR240612 reversed PSNL-induced enhanced protein and mRNA expression of B1R and TRPV1 mRNA levels in spinal cord while SB366791 further increased B1R mRNA/protein expression. B1R and TRPV1 were found in non-peptide sensory fibers and astrocytes, and colocalized in the spinal dorsal horn and DRG, notably with IL-1β on astrocytes. IL-1β mRNA further increased under B1R or TRPV1 antagonism. Data suggest that B1R and TRPV1 contribute to thermal hyperalgesia and play a distinctive role in allodynia associated with NP. Close interaction and reciprocal regulatory mechanism are suggested between B1R and TRPV1 on astrocytes and nociceptors in NP.

Learn More >

Controllable Forces for Reproducible Chronic Constriction Injury Mimicking Compressive Neuropathy in Rat Sciatic Nerve.

Compressive neuropathy is a recurring and challenging disease for patients, regardless of medical or surgical treatment. Neuropathological severity is associated with the force of mechanical compression. Available animal models do not address mechanical issues with reproducible outcomes. We used a chronic constriction injury model to analyze tension-controlled compressive neuropathy and achieve reproducible functional outcomes.

Learn More >

The Short-term Effect of Graded Motor Imagery on the Affective Components of Pain in Subjects with Chronic Shoulder Pain Syndrome: Open-Label Single-Arm Prospective Study.

To determine the short-term effect of graded motor imagery (GMI) on the affective components of pain and range of motion in subjects with chronic shoulder pain syndrome.

Learn More >

Health-related quality of life in adolescents with persistent pain and the mediating role of self-efficacy: a cross-sectional study.

Persistent pain has a high prevalence among adolescents. Pain has been shown to reduce all aspects of the adolescent's health-related quality of life (HRQOL). In adult patients with pain, self-efficacy has been shown to mediate the relationship between pain intensity, disability and depression. However, little is known about whether self-efficacy acts as a mediating variable in the relationship between persistent pain and HRQOL sub-scale scores in a school-based population of adolescents.

Learn More >

Adiponectin receptor 1 gene is potentially associated with severity of postoperative pain but not cancer pain.

Adiponectin is an adipose tissue-derived cytokine that exerts its antiinflammatory effects by binding to 2 adiponectin receptors, adiponectin receptor 1 (ADIPOR1) and adiponectin receptor 2 (ADIPOR2). However, the role of these adiponectin receptors on inflammatory pain remains unclear. We investigated the association between single nucleotide polymorphisms (SNPs) of these genes and inflammatory pain, such as postoperative pain and cancer pain.We analyzed 17 SNPs of the ADIPOR1 gene and 27 SNPs of the ADIPOR2 gene in 56 adult patients with postlaparotomy pain. We compared these genotypes with pain intensity and opioid consumption, adjusting for multiple testing. We analyzed the genotypes of 88 patients with cancer pain and examined the association of the relevant SNP(s) with pain intensity and opioid consumption.One variant of the ADIPOR1 gene (rs12045862) showed significant association with postoperative pain intensity; patients with minor allele homozygote (n = 7) demonstrated significantly worse pain intensity than that of combined patient group exhibiting major allele homozygote or the heterozygote (n = 49; Mann-Whitney test, P < .00002), although their opioid consumptions were comparable. Cancer pain intensity between minor allele homozygote patients (n = 7) and other 2 genotype patients (n = 81) were comparable.The rs12045862 SNP of the ADIPOR1 gene was associated with postoperative pain but not cancer pain. This might result from functional alteration of the ADIPOR1 signalling pathways, which influence the inflammatory process. ADIPOR1 may be a novel potential target for developing analgesics of postoperative pain.

Learn More >

What is the minimal important difference of pain intensity, mandibular function, and headache impact in patients with temporomandibular disorders? Clinical significance analysis of a randomized controlled trial.

There are insufficient studies providing Minimal Clinically Important Difference (MCID) for outcomes related to temporomandibular disorders (TMD).

Learn More >

Pharmacotherapy for Cluster Headache.

Cluster headache is characterised by attacks of excruciating unilateral headache or facial pain lasting 15 min to 3 h and is seen as one of the most intense forms of pain. Cluster headache attacks are accompanied by ipsilateral autonomic symptoms such as ptosis, miosis, redness or flushing of the face, nasal congestion, rhinorrhoea, peri-orbital swelling and/or restlessness or agitation. Cluster headache treatment entails fast-acting abortive treatment, transitional treatment and preventive treatment. The primary goal of prophylactic and transitional treatment is to achieve attack freedom, although this is not always possible. Subcutaneous sumatriptan and high-flow oxygen are the most proven abortive treatments for cluster headache attacks, but other treatment options such as intranasal triptans may be effective. Verapamil and lithium are the preventive drugs of first choice and the most widely used in first-line preventive treatment. Given its possible cardiac side effects, electrocardiogram (ECG) is recommended before treating with verapamil. Liver and kidney functioning should be evaluated before and during treatment with lithium. If verapamil and lithium are ineffective, contraindicated or discontinued because of side effects, the second choice is topiramate. If all these drugs fail, other options with lower levels of evidence are available (e.g. melatonin, clomiphene, dihydroergotamine, pizotifen). However, since the evidence level is low, we also recommend considering one of several neuromodulatory options in patients with refractory chronic cluster headache. A new addition to the preventive treatment options in episodic cluster headache is galcanezumab, although the long-term effects remain unknown. Since effective preventive treatment can take several weeks to titrate, transitional treatment can be of great importance in the treatment of cluster headache. At present, greater occipital nerve injection is the most proven transitional treatment. Other options are high-dose prednisone or frovatriptan.

Learn More >

Search