- Anniversary/History
- Membership
- Publications
- Resources
- Education
- Events
- Outreach
- Careers
- About
- For Pain Patients and Professionals
Patients with osteoarthritis (OA) may remain symptomatic with traditional OA treatments.
Learn More >Studies of the peripheral nervous system rely on controlled manipulation of neuronal function with pharmacologic and/or optogenetic techniques. Traditional hardware for these purposes can cause notable damage to fragile nerve tissues, create irritation at the biotic/abiotic interface, and alter the natural behaviors of animals. Here, we present a wireless, battery-free device that integrates a microscale inorganic light-emitting diode and an ultralow-power microfluidic system with an electrochemical pumping mechanism in a soft platform that can be mounted onto target peripheral nerves for programmed delivery of light and/or pharmacological agents in freely moving animals. Biocompliant designs lead to minimal effects on overall nerve health and function, even with chronic use in vivo. The small size and light weight construction allow for deployment as fully implantable devices in mice. These features create opportunities for studies of the peripheral nervous system outside of the scope of those possible with existing technologies.
Learn More >The canonical view is that touch is signaled by fast-conducting, thickly myelinated afferents, whereas pain is signaled by slow-conducting, thinly myelinated ("fast" pain) or unmyelinated ("slow" pain) afferents. While other mammals have thickly myelinated afferents signaling pain (ultrafast nociceptors), these have not been demonstrated in humans. Here, we performed single-unit axonal recordings (microneurography) from cutaneous mechanoreceptive afferents in healthy participants. We identified A-fiber high-threshold mechanoreceptors (A-HTMRs) that were insensitive to gentle touch, encoded noxious skin indentations, and displayed conduction velocities similar to A-fiber low-threshold mechanoreceptors. Intraneural electrical stimulation of single ultrafast A-HTMRs evoked painful percepts. Testing in patients with selective deafferentation revealed impaired pain judgments to graded mechanical stimuli only when thickly myelinated fibers were absent. This function was preserved in patients with a loss-of-function mutation in mechanotransduction channel PIEZO2. These findings demonstrate that human mechanical pain does not require PIEZO2 and can be signaled by fast-conducting, thickly myelinated afferents.
Learn More >Chronic pain presents a major unmet clinical problem. The development of more effective treatments is hindered by our limited understanding of the neuronal circuits underlying sensory perception. Here, we show that parvalbumin (PV)-expressing dorsal horn interneurons modulate the passage of sensory information conveyed by low-threshold mechanoreceptors (LTMRs) directly via presynaptic inhibition and also gate the polysynaptic relay of LTMR input to pain circuits by inhibiting lamina II excitatory interneurons whose axons project into lamina I. We show changes in the functional properties of these PV interneurons following peripheral nerve injury and that silencing these cells unmasks a circuit that allows innocuous touch inputs to activate pain circuits by increasing network activity in laminae I-IV. Such changes are likely to result in the development of tactile allodynia and could be targeted for more effective treatment of mechanical pain.
Learn More >To evaluate, in vivo, the impact of ongoing chronic migraine (CM) attacks on the endogenous μ-opioid neurotransmission.
Learn More >Rodent disease models can play an indispensable role in drug development. Confirming that translationally-relevant disease mechanisms are engaged in such models is a crucial facet of this process. Accordingly, we have validated the role of calcitonin gene-related peptide signaling in a mouse model of glyceryl trinitrate-provoked migraine-like pain and a spontaneous rat model of migraine-like pain by assessing their pharmacological responsiveness to the small molecule calcitonin gene-related peptide receptor antagonist olcegepant, and the humanised monoclonal calcitonin gene-related peptide antibody ALD405.
Learn More >In this randomized clinical trial, we examined whether the effect of true acupuncture can be differentiated from sham acupuncture (pain and functionality) by analyzing quantitative sensory testing (QST) profiles in chronic pain participants. We recruited 254 healthy or chronic back and neck pain participants. Healthy subjects were included to control for a possible effect of acupuncture on baseline QST changes. Study participants received six sessions (twice weekly) of true acupuncture, sham acupuncture, or no acupuncture treatment (routine care). QST profiles, pain scores and functionality profile were obtained at baseline (visit 1) and after 3 (visit 4) or 6 sessions (visit 7). A total of 204 participants were analyzed. We found no QST profile changes among three groups (P = 0.533 and P = 0.549, Likelihood-ratio tests) in either healthy or chronic pain participants. In chronic back and neck pain participants, true acupuncture reduced pain [visit 4: DIM (difference in mean) = -0.8, 95% CI: -1.4 to -0.1, adjusted P = 0.168; visit 7: DIM = -1.0, 95% CI: -1.7 to -0.3, adjusted P = 0.021) and improved functional status including physical functioning (DIM = 14.21, 95% CI: 5.84 to 22.58, adjusted P = 0.003) and energy/fatigue (DIM = 12.28, 95% CI: 3.46 to 21.11, adjusted P = 0.021) as compared to routine care. Our results indicate that QST was not helpful to differentiate between true acupuncture and sham acupuncture (primary outcome) in this study, although true acupuncture reduced pain and improved functionality (secondary outcomes) when compared with routine care.
Learn More >Pain is the hallmark of sickle cell disease (SCD) and it can be severe, frequent and unpredictable. Although nociceptive pain is more common, at times, people with SCD may have neuropathic pain. The latter can occur due to peripheral or central nerve injury. This review is focused on identifying treatment of only painful sensory neuropathy in people with SCD.
Learn More >Neurophysiological mechanisms leading to chronicity of pruritus are not yet fully understood and it is not known whether these mechanisms diverge between different underlying diseases of chronic pruritus. This study aimed to detect such mechanisms in chronic pruritus of various origins. One-hundred and twenty patients with chronic pruritus of inflammatory origin (atopic dermatitis), neuropathic origin (brachioradial pruritus) and chronic prurigo of nodular type, the latter as a model for chronic scratching, as well as 40 matched healthy controls participated in this study. Stimulation with cowhage induced a more intensive itch sensation compared to stimulation with other substances in all patient groups but not in healthy controls, arguing for sensitisation of cutaneous mechano- and heat-sensitive C-fibers in chronic pruritus. All patient groups showed a decreased intraepidermal nerve fibre density compared to controls. A decreased condition pain modulation effect was observed in all patient groups compared to controls, suggesting a reduced descending inhibitory system in chronic pruritus. In sum, chronic pruritus of different etiology showed a mixed peripheral and central pattern of neuronal alterations, which might contribute to the chronicity of pruritus with no differences between pruritus entities. Our findings may contribute to the development of future treatment strategies targeting these pathomechanisms.
Learn More >Although pain reduction after alcohol administration has repeatedly been demonstrated, alcohol effects on advanced and clinically relevant dynamic pain paradigms are still unknown. As such, temporal summation of pain (TSP) and conditioned pain modulation (CPM) indicate mechanisms of endogenous pain modulation and involve certain neurotransmitter systems crucially influenced by alcohol. Our study is the first to investigate acute alcohol effects on TSP and CPM. We investigated 39 healthy subjects in a placebo-controlled within-subject design and targeted alcohol levels of 0.06% (dose 1) and 0.08% (dose 2). Pain threshold, TSP, and CPM were evaluated before and after an alcoholic or placebo drink. Temporal summation of pain was assessed as enhanced pain response to 5 repetitive contact heat stimuli (threshold +3°C). Conditioned pain modulation was tested as pain inhibition when a conditioning stimulus (46°C hot water) was applied concurrently to a test stimulus (contact heat; threshold + 3°C). Both alcohol doses boosted CPM, with a greater effect size for the higher dose. Conditioning stimulus ratings increased after alcohol intake but were not correlated with CPM, suggesting independence of these effects. Temporal summation of pain was not affected by alcohol, and alcohol effects on pain threshold were small and limited to the higher dose. Our findings suggest that analgesic alcohol effects might be mainly driven by an enhancement of endogenous pain inhibition. The frequent use of alcohol as self-medication in chronic pain might be motivated by alcohol temporarily restoring deficient CPM, thus leading to pain relief in the short run and alcohol-related problems in the long run.
Learn More >Calcitonin gene-related peptide receptor has been implicated in the pathogenesis of migraine. Rimegepant is an orally administered, small-molecule, calcitonin gene-related peptide receptor antagonist that may be effective in acute migraine treatment.
Learn More >Episodic cluster headache is a disabling neurologic disorder that is characterized by daily headache attacks that occur over periods of weeks or months. Galcanezumab, a humanized monoclonal antibody to calcitonin gene-related peptide, may be a preventive treatment for cluster headache.
Learn More >Methylglyoxal (MGO), an endogenous reactive carbonyl compound, plays a key role in the pathogenesis of diabetic neuropathy. The aim of this study is to investigate the role of MGO in diabetic itch and hypoalgesia, two common symptoms associated with diabetic neuropathy. : Scratching behavior, mechanical itch (alloknesis), and thermal hypoalgesia were quantified after intradermal (i.d.) injection of MGO in naïve mice or in diabetic mice induced by intraperitoneal (i.p.) injection of streptozotocin (STZ). Behavioral testing, patch-clamp recording, transgenic mice, and gene expression analysis were used to investigate the mechanisms underlying diabetic itch and hypoalgesia in mice. : I.d. injection of MGO evoked dose-dependent scratching in normal mice. Addition of MGO directly activated transient receptor potential ankyrin 1 (TRPA1) to induce inward currents and calcium influx in dorsal root ganglia (DRG) neurons or in TRPA1-expressing HEK293 cells. Mechanical itch, but not spontaneous itch was developed in STZ-induced diabetic mice. Genetic ablation of ( ), pharmacological blockade of TRPA1 and Na1.7, antioxidants, and mitogen-activated protein kinase kinase enzyme (MEK) inhibitor U0126 abrogated itch induced by MGO or in STZ-induced diabetic mice. Thermal hypoalgesia was induced by intrathecal (i.t.) injection of MGO or in STZ-induced diabetic mice, which was abolished by MGO scavengers, intrathecal injection of TRPA1 blockers, and in mice. : This study revealed that Na1.7 and MGO-mediated activation of TRPA1 play key roles in itch and hypoalgesia in a murine model of type 1 diabetes. Thereby, we provide a novel potential therapeutic strategy for the treatment of itch and hypoalgesia induced by diabetic neuropathy.
Learn More >Migraine is associated with activation of the trigeminovascular system, release of calcitonin gene-related peptide (CGRP) and dilation of dural arteries. Novel treatments target calcitonin gene-related peptide or its receptor, which are present in all vascular beds, raising cardiovascular concerns. Erenumab is a human CGRP-receptor antibody approved for the prophylactic treatment of migraine.
Learn More >Many autoimmune skin diseases, such as bullous pemphigoid (BP), psoriasis and certain types of chronic urticaria, are associated with intensive pruritus. While histamine and neuropeptides have previously been ascribed to play a role in itch that accompanies these diseases, recent evidence suggests that the pruritogenic cytokine interleukin (IL)-31 is a major driver of pruritic responses. IL-31 was originally shown to be produced by activated helper T cells, particularly Th2 cells, mast cells, macrophages and dendritic cells. However, more recent evidence demonstrated that eosinophils are a major source of this cytokine too, particularly in bullous pemphigoid. Basophils have also been shown to express the cytokine which, through autocrine action, strongly supports the production of other Th2-type cytokines from these cells. These investigations suggest that the dynamic recruitment of eosinophils and basophils in some autoimmune skin diseases could play an important role in the severity of IL-31-mediated itch. Furthermore, these studies suggest that IL-31, in addition to its pruritic actions, also has potential immunomodulatory roles in terms of supporting Th2-type immunity, which often underpins IgE-associated autoimmune diseases (such as bullous pemphigoid and urticaria) as well as allergies. While the role of IL-31 in psoriasis remains to be clarified, current evidence shows that this cytokine plays a major role in BP, chronic spontaneous urticaria and dermatomyositis. This suggests potential use of IL-31 receptor-blocking therapeutic approaches (e.g., Nemolizumab) for the treatment of IL-31-associated disorders.
Learn More >Today over 80% of children diagnosed with cancer are expected to survive. Despite the high prevalence of pain associated with the diagnosis and treatment of childhood cancer, there is a limited understanding of how having cancer shapes children's experience and meaning of pain after treatment has ended. This study addresses this gap by exploring childhood cancer survivors' (CCS') experiences of pain from their perspective and the perspective of their parents.
Learn More >HCN ion channels conducting the I current control the frequency of firing in peripheral sensory neurons signalling pain Previous studies have demonstrated a major role for the HCN2 subunit in chronic pain but a potential involvement of HCN3 in pain has not been investigated HCN3 was found to be widely expressed in all classes of sensory neurons (small, medium, large) where it contributes to I HCN3 deletion increased the firing rate of medium, but not small, sensory neurons Pain sensitivity both acutely and following neuropathic injury was largely unaffected by HCN3 deletion, with the exception of a small decrease of mechanical hyperalgesia in response to a pinprick We conclude that HCN3 plays little role in either acute or chronic pain sensation HCN ion channels generate an inward current that can regulate action potential firing in somatosensory nerve fibres and can play an important role in pain sensation. The HCN1 isoform plays a limited role only in cold sensation following nerve injury. HCN2, on the other hand, is a key regulator of excitability in nociceptive nerve fibres, and controls the perception of inflammatory and neuropathic pain, but has no influence on acute pain sensation. Here we examine a potential role for the HCN3 isoform in neuronal excitability and pain. HCN3 is widely expressed in somatosensory neurons, and contributes to the regulation of firing of action potentials in medium-sized neurons, amongst which many have a nociceptive function. Genetic deletion of HCN3, however, had little impact on acute pain sensation, on inflammatory pain, nor on pain following nerve injury (neuropathic pain). We conclude that HCN3 does not play an important role in pain sensation.
Learn More >The purpose of this study is to evaluate the effectiveness of a multimodal approach to treating chronic low back pain.
Learn More >Chronic headache is a significant worldwide problem despite advances in treatment options. Chronic headaches can have significant a detrimental impact on the activities of daily living.
Learn More >Chronic pain in adults with sickle cell disease (SCD) may be the result of altered processing in the central nervous system as indicated by quantitative sensory testing (QST). Sensory pain quality descriptors on the McGill Pain Questionnaire (MPQ) are indicators of typical or altered pain mechanisms but have not been validated with QST-derived classifications.
Learn More >The vicious itch-scratch cycle is a cardinal feature of atopic dermatitis (AD), in which IL-13 signaling plays a dominant role. Keratinocytes express two receptors: The heterodimeric IL-4Rα/IL-13Rα1 and IL-13Rα2. The former one transduces a functional IL-13 signal, whereas the latter IL-13Rα2 works as a nonfunctional decoy receptor. To examine whether scratch injury affects the expression of IL-4Rα, IL-13Rα1, and IL-13Rα2, we scratched confluent keratinocyte sheets and examined the expression of three IL-13 receptors using quantitative real-time PCR (qRT-PCR) and immunofluorescence techniques. Scratch injuries significantly upregulated the expression of in a scratch line number-dependent manner. Scratch-induced upregulation was synergistically enhanced in the simultaneous presence of IL-13. In contrast, scratch injuries did not alter the expression of and , even in the presence of IL-13. Scratch-induced expression was dependent on ERK1/2 and p38 MAPK signals. The expression of IL-13Rα2 protein was indeed augmented in the scratch edge area and was also overexpressed in lichenified lesional AD skin. IL-13 inhibited the expression of involucrin, an important epidermal terminal differentiation molecule. IL-13-mediated downregulation of involucrin was attenuated in IL-13Rα2-overexpressed keratinocytes, confirming the decoy function of IL-13Rα2. Our findings indicate that scratching upregulates the expression of the IL-13 decoy receptor IL-13Rα2 and counteracts IL-13 signaling.
Learn More >To review and highlight current literature on emerging acute migraine treatments, focusing on CGRP receptor antagonists, gepants, and 5-HT receptor agonists (ditans).
Learn More >Recent evidence shows that numerous microRNAs (miRNAs) regulate pain-related genes in chronic pain. The aim of the present study was to further explore the regulation of miRNAs and their effect on the expression of pain-associated target genes in experimental neuropathic pain.
Learn More >We have recently demonstrated that sciatic nerve injury increases the expression of spinal cytochrome P450c17, a key neurosteroidogenic enzyme, which plays a critical role in the development of peripheral neuropathic pain. However, the modulatory mechanisms responsible for the expression of spinal P450c17 have yet to be examined. Here we investigated the possible involvement of interleukin-1β (IL-1β) in altering P450c17 expression during the induction phase of neuropathic pain. Neuropathic pain was produced by chronic constriction injury (CCI) of the right sciatic nerve in mice and mechanical allodynia was evaluated in the hind paws using a von-Frey filament (0.16 g). Western blotting and immunohistochemistry were performed to assess the expression of spinal IL-1β, interleukin-1 receptor type 1 (IL-1R1), P450c17, and GFAP. Spinal IL-1β was significantly increased on day 1 post-surgery and its receptor, IL-1R1 was expressed in GFAP-positive astrocytes. Intrathecal administration of the recombinant interleukin-1 receptor antagonist (IL-1ra, 20 ng) on days 0 and 1 post-surgery enhanced GFAP expression on day 1 post-surgery and induced an early increase in P450c17 expression in astrocytes, but not in neurons. Administration of IL-1β (10 ng) on days 0 and 1 post-surgery blocked the enhancement of both spinal P450c17 and GFAP expression induced by IL-1ra (20 ng) administration. Intrathecal administration of IL-1ra (20 ng) on days 0 to 3 post-surgery also facilitated the CCI-induced development of mechanical allodynia, and this early developed pain was dose-dependently attenuated by the administration of the P450c17 inhibitor, ketoconazole (1, 3, or 10 nmol) or the astrocyte metabolic inhibitor, fluorocitrate (0.01, 0.03, or 0.1 nmol). These results demonstrate that early increases in spinal IL-1β temporally inhibit astrocyte P450c17 expression and astrocyte activation ultimately controlling the development of mechanical allodynia induced by peripheral nerve injury. These findings imply that spinal IL-1β plays an important role as an early, but transient, control mechanism in the development of peripheral neuropathic pain via the inhibition of astrocyte P450c17 expression and astrocyte activation.
Learn More >This review presents the neurophysiologic principles and clinical applications of transcranial magnetic stimulation (TMS) and other related techniques of noninvasive cortical stimulation. TMS can serve various purposes for diagnosis or treatment. Regarding diagnosis, TMS is mainly dedicated to the recording of motor evoked potentials (MEPs). MEP recording allows investigation of corticospinal conduction time and cortical motor control in clinical practice. Especially when using image-guided neuronavigation methods, MEP recording is a reliable method to perform functional mapping of muscle representation within the motor cortex. Using various types of paired-pulse paradigms, TMS allows the assessment of brain circuit excitability or plastic changes affecting these circuits. In particular, paired-pulse TMS paradigms are able to appraise the intracortical balance between inhibitory controls mediated by GABAergic neurotransmission and excitatory controls mediated by glutamatergic neurotransmission. Finally, TMS delivered as repetitive trains of stimulation (rTMS) may activate, inhibit, or otherwise interfere with the activity of neuronal cortical networks, depending on stimulus frequency and intensity, and brain-induced electric field configuration. Therefore by modifying brain functions, with after-effects lasting beyond the time of stimulation, rTMS opens exciting perspectives for therapeutic applications, especially in the domain of depression and chronic pain syndromes.
Learn More >: Pruritus is a common symptom associated with several potential underlying causes, including both dermatologic and systemic diseases; it can also occur without an identifiable cause. Current treatment options are limited and most patients experience impaired quality of life. Serlopitant is a neurokinin 1 (NK) receptor antagonist under development for the treatment of pruritus associated with various dermatologic conditions and chronic pruritus of unknown origin. : This review describes the epidemiology and unmet needs of patients with chronic pruritus, focusing specifically on patients with prurigo nodularis, psoriatic itch, and chronic pruritus of unknown origin; the rationale for targeting the NK receptor for treatment of chronic pruritus; and the clinical development of serlopitant, including efficacy and safety data from completed phase II studies. : There is an unmet need for novel, safe, and effective therapies to treat chronic pruritus. Serlopitant has shown promising efficacy, safety, and tolerability across different patient populations, including adolescents and elderly patients. In contrast to less convenient administration options, serlopitant is a once-daily oral tablet, which is expected to facilitate compliance.
Learn More >KCC2 regulates neuronal transmembrane chloride gradients and thereby controls GABA signaling in the brain. KCC2 downregulation is observed in numerous neurological and psychiatric disorders. Paradoxical, excitatory GABA signaling is usually assumed to contribute to abnormal network activity underlying the pathology. We tested this hypothesis and explored the functional impact of chronic KCC2 downregulation in the rat dentate gyrus. Although the reversal potential of GABAA receptor currents is depolarized in KCC2 knockdown neurons, this shift is compensated by depolarization of the resting membrane potential. This reflects downregulation of leak potassium currents. We show KCC2 interacts with Task-3 (KCNK9) channels and is required for their membrane expression. Increased neuronal excitability upon KCC2 suppression altered dentate gyrus rhythmogenesis, which could be normalized by chemogenetic hyperpolarization. Our data reveal KCC2 downregulation engages complex synaptic and cellular alterations beyond GABA signaling that perturb network activity thus offering additional targets for therapeutic intervention.
Learn More >Calcitonin-gene-related peptide (CGRP), a neuropeptide broadly distributed in neuronal and non-neuronal regions throughout the body, plays a fundamental role in migraine and cluster headache (CH) pathophysiology. CGRP functional blockade alleviates neurogenic inflammation and reduces pain pathway sensitization. Two types of CGRP function-blocking modalities, monoclonal antibodies (MAbs), and small molecules (gepants), have been designed to target the CGRP ligands and CGRP receptors. In this narrative review, we summarized the latest clinical trials on gepants and CGRP function-blocking MAbs for migraine and CH prevention. At the time of writing, newer gepants are currently under Federal Drug Administration (FDA) review for migraine management, but there is no study yet on the usage of gepants for CH. Erenumab, fremanezumab, and galcanezumab have been approved by the FDA for migraine prevention while eptinezumab is under FDA review. CGRP MAbs are as effective as and more tolerable than conventional migraine preventives. For CH prevention, galcanezumab has shown some promising findings and was recently approved for use in episodic cluster prevention. CGRP function-blocking therapy not only demonstrates high efficacy and superior safety profile, but also improves headache frequency and quality of life. Convenient monthly dosing for the MAbs can further improve medication adherence, hence better headache control. With CGRP function-blocking therapy showing efficacy even in individuals who failed other preventives, it has become an exciting new therapeutic option in the field of migraine and CH.
Learn More >Chronic pain is a critical clinical problem with an increasing prevalence. However, there are limited effective prevention measures and treatments for chronic pain. Astrocytes are the most abundant glial cells in the central nervous system and play important roles in both physiological and pathological conditions. Over the past few decades, a growing body of evidence indicates that astrocytes are involved in the regulation of chronic pain. Recently, reactive astrocytes were further classified into A1 astrocytes and A2 astrocytes according to their functions. After nerve injury, A1 astrocytes can secrete neurotoxins that induce rapid death of neurons and oligodendrocytes, whereas A2 astrocytes promote neuronal survival and tissue repair. These findings can well explain the dual effects of reactive astrocytes in central nervous injury and diseases. In this review, we will summarise the (1) changes in the morphology and function of astrocytes after noxious stimulation and nerve injury, (2) molecular regulators and signalling mechanisms involved in the activation of astrocytes and chronic pain, (3) the role of spinal and cortical astrocyte activation in chronic pain, and (4) the roles of different subtypes of reactive astrocytes (A1 and A2 phenotypes) in nerve injury that is associated with chronic pain. This review provides updated information on the role of astrocytes in the regulation of chronic pain. In particular, we discuss recent findings about A1 and A2 subtypes of reactive astrocytes and make several suggestions for potential therapeutic targets for chronic pain.
Learn More >There are no surrogate markers for the development of postherpetic neuralgia (PHN) in patients with herpes zoster (HZ).
Learn More >Herpes zoster, a frequent complication following autologous hematopoietic stem cell transplantation (HSCT), is associated with significant morbidity. A nonlive adjuvanted recombinant zoster vaccine has been developed to prevent posttransplantation zoster.
Learn More >Background and aims Chronic low back pain (chronic LBP) is the number one cause for years lived with disability among 301 diseases and injuries analyzed by The Global Burden of Disease study 2013. Insomnia is highly prevalent among people with chronic LBP. To explain the sleep-pain relationship, theoretical models propose that insomnia symptoms may be associated with increased basal inflammation, operationalized as c-reactive protein (CRP) and lead to further pain and disrupted sleep. We aimed to determine the associations between insomnia, chronic LBP, and inflammation (operationalized as CRP), whilst controlling for age, body mass index, smoking, physical activity, depression, anxiety and osteoarthritis. Methods A cross-sectional analysis of the third Nord-Trøndelag Health Study (2006-2008), a rural population survey of 50,666 participants in Norway aged 20-96 years. Insomnia (dichotomous) was defined according to the Diagnostic and Statistical Manual of Mental Disorders 5th Edition, and chronic LBP (dichotomous) as low back pain or stiffness lasting at least 3 months. Data for CRP were obtained from non-fasting serum samples and assessed via latex immunoassay methodology. We excluded participants with the following self-reported chronic somatic diseases: chronic heart failure, chronic obstructive pulmonary disease, rheumatoid arthritis, fibromyalgia or ankylosing spondylosis. Possible associations between presence of insomnia and presence of chronic LBP (dependent), and the level of CRP and presence of chronic LBP (dependent), were assessed using logistic regression models. The possible association between insomnia and CRP (dependent) was assessed using linear regression. Multivariable analyses were conducted adjusting for confounders stated in our aim that achieved p ≤ 0.2 in univariate regressions. We performed stratified analyses for participants with "Normal" (<3 mg/L) "Elevated" (3-10 mg/L) and "Very High" (>10 mg/L) levels of CRP. Results In our total included sample (n = 30,669, median age 52.6, 54% female), 6.1% had insomnia (n = 1,871), 21.4% had chronic LBP (n = 6,559), and 2.4% had both (n = 719). Twenty four thousand two hundred eighty-eight (79%) participants had "Normal" CRP, 5,275 (17%) had "Elevated" CRP, and 1,136 (4%) had "Very High" CRP. For participants with "Normal" levels of CRP, insomnia was associated with higher levels of CRP (adjusted B = 0.04, 95%CI [0.00-0.08], p = 0.046), but not for people with "Elevated" or "Very High" levels of CRP. There was an association between CRP and presence of chronic LBP in the total sample (adjusted OR = 1.01, [1.00-1.01], p = 0.013) and for people with "Normal" CRP (1.05, [1.00-1.10, p = 0.034]. Insomnia was associated with the presence of chronic LBP in the total sample (adjusted OR = 1.99, 95%CI [1.79-2.21], <0.001) and for people with "Normal", "Elevated" and "Very High". Conclusions Individuals with insomnia have twice the odds of reporting chronic LBP. Insomnia, CRP and chronic LBP appear to be linked but the role of CRP appears to be limited. Longitudinal studies may help further explore the causal inference between insomnia chronic LBP, and inflammation. Implications Given the strong relationship between insomnia and chronic LBP, screening and management of comorbid insomnia and chronic LBP should be considered in clinical practice. Further longitudinal studies are required to explore whether the presence of insomnia and increased inflammation affects the development of chronic LBP.
Learn More >Two guidelines about opioid use in chronic pain management were published in 2017: the and the European Pain Federation position paper on appropriate opioid use in chronic pain management. Though the target populations for the guidelines are the same, their recommendations differ depending on their purpose. The intent of the Canadian guideline is to reduce the incidence of serious adverse effects. Its goal was therefore to set limits on the use of opioids. In contrast, the European Pain Federation position paper is meant to promote safe and appropriate opioid use for chronic pain. The content of the two guidelines could have unintentional consequences on other populations that receive opioid therapy for symptom management, such as patients with cancer. In this article, we present expert opinion about those chronic pain management guidelines and their impact on patients with cancer diagnoses, especially those with histories of substance use disorder and psychiatric conditions. Though some principles of chronic pain management can be extrapolated, we recommend that guidelines for cancer pain management should be developed using empirical data primarily from patients with cancer who are receiving opioid therapy.
Learn More >We hypothesized that patients with complex regional pain syndrome (CRPS) would describe a more negative pain phenotype including higher pain severity, more neuropathic pain descriptors, more centralized pain symptoms, poorer physical function, and more affective distress when compared with patients with neuropathic pain of the extremities not meeting CRPS criteria.
Learn More >The host evolves redundant mechanisms to preserve physiological processing and homeostasis. These functions range from sensing internal and external threats, creating a memory of the insult and generating reflexes which aim to resolve inflammation. Impairment in such functioning leads to chronic inflammatory diseases. By interacting through a common language of ligands and receptors, the immune and sensory nervous systems work in concert to accomplish such protective functions. While this bidirectional communication helps to protect from danger, it can contribute to disease pathophysiology. Thus, the somatosensory nervous system is anatomically positioned within primary and secondary lymphoid tissues and mucosa to modulate immunity directly. Upstream of this interplay, neurons detect danger which prompts the release of neuropeptides initiating i) defensive reflexes (ranging from withdrawal response to coughing); and ii) chemotaxis, adhesion and local infiltration of immune cells. The resulting outcome of such neuro-immune interplay is still ill-defined, but consensual findings start to emerge and support neuropeptides as blockers of T 1-mediated immunity but also as drivers of T 2 immune responses. However, the modalities detected by nociceptors revealed broader than mechanical pressure and temperature sensing and include signals as various as cytokines and pathogens to immunoglobulins and even microRNAs. Along these lines, we aggregated various dorsal root ganglion sensory neurons expression profiling datasets supporting such wide-ranging sensing capabilities and to help identify novel danger detection modalities of these cells. Thus, revealing unexpected aspects of nociceptor neurons biology might prompt the identification of novel drivers of immunity, means to resolve inflammation and strategies to safeguard homeostasis. This article is protected by copyright. All rights reserved.
Learn More >There is unmet need to design an analgesic with fewer side effects for severe pain management. Although traditional opioids are the most effective painkillers, they are accompanied by severe adverse responses, such as respiratory depression, constipation symptoms, tolerance, withdrawal, and addiction. We indicated BPR1M97 as a dual mu opioid receptor (MOP)/nociceptin-orphanin FQ peptide (NOP) receptor full agonist and investigated the pharmacology of BPR1M97 in multiple animal models. In vitro studies on BPR1M97 were assessed using cyclic-adenosine monophosphate production, β-arrestin, internalization, and membrane potential assays. In vivo studies were characterized using the tail-flick, tail-clip, lung functional, heart functional, acetone drop, von Frey hair, charcoal meal, glass bead, locomotor activity, conditioned place preference (CPP) and naloxone precipitation tests. BPR1M97 elicited full agonist properties for all cell-based assays tested in MOP-expressing cells. However, it acted as a G protein-biased agonist for NOP. BPR1M97 initiated faster antinociceptive effects at 10 min after subcutaneous injection and elicited better analgesia in cancer-induced pain than morphine. Unlike morphine, BPR1M97 caused less respiratory, cardiovascular, and gastrointestinal dysfunction. In addition, BPR1M97 decreased global activity and induced less withdrawal jumping precipitated by naloxone. Thus, BPR1M97 could serve as a novel small molecule dual receptor agonist for antinociception with fewer side effects than morphine.
Learn More >The quality of life for millions of people worldwide is affected by chronic pain. In addition to the effect of chronic pain on well-being, chronic pain has also been associated with poor health conditions and increased mortality. Due to its multifactorial origin, the classification of pain types remains challenging. MicroRNAs (miRNA) are small molecules that regulate gene expression. They are released into the bloodstream in a stable manner under normal and pathological conditions and have been described as potential biomarkers. In the present study, we aimed to investigate whether pain may induce an aberrant, specific dysregulation of miRNA expression, depending on the origin of the pain.
Learn More >We explored the immune neuropathology underlying multi-day relief from neuropathic pain in a rat model initiated at the sciatic nerve, by using a nanoemulsion-based nanomedicine as a biological probe. The nanomedicine is theranostic: both therapeutic (containing celecoxib drug) and diagnostic (containing near-infrared fluorescent (NIRF) dye) and is small enough to be phagocytosed by circulating monocytes. We show that pain-like behavior reaches a plateau of maximum hypersensitivity 8 days post-surgery, and is the rationale for intravenous delivery at this time-point. Pain relief is evident within 24 h, lasting approximately 6 days. The ipsilateral sciatic nerve and associated L4 and L5 dorsal root ganglia (DRG) tissue of both nanomedicine and control (nanoemulsion without drug) treated animals was investigated by immunofluorescence and confocal microscopy at the peak of pain relief (day-12 post-surgery), and when pain-like hypersensitivity returns (day-18 post-surgery). At day-12, a significant reduction of infiltrating macrophages, mast cells and mast cell degranulation was observed at the sciatic nerve following treatment. In the DRG, there was no effect of treatment at both day-12 and day-18. Conversely, at the DRG, there is a significant increase in macrophage infiltration and mast cell degranulation at day-18. The treatment effect on immune pathology in the sciatic nerve was investigated further by assessing the expression of macrophage cyclooxygenase-2 (COX-2)-the drug target-and extracellular prostaglandin E2 (PGE2), as well as the proportion of M1 (pro-inflammatory) and M2 (anti-inflammatory) macrophages. At day-12, there is a significant reduction of COX-2 positive macrophages, extracellular PGE2, and a striking reversal of macrophage polarity. At day-18, these measures revert to levels observed in control-treated animals. Here we present a new paradigm of immune neuropathology research, by employing a nanomedicine to target a mechanism of neuropathic pain-resulting in long-lasting pain relief–whilst revealing novel immune pathology at the injured nerve and associated DRG.
Learn More >Carboplatin, an anticancer drug, often causes chemotherapy-induced peripheral neuropathy (PN). Transient receptor potential ankyrin 1 (TRPA1), a non-selective cation channel, is a polymodal nociceptor expressed in sensory neurons. TRPA1 is not only involved in pain transmission, but also in allodynia or hyperalgesia development. However, the effects of TRPA1 on carboplatin-induced PN is unclear. We revealed that carboplatin induced mechanical allodynia and cold hyperalgesia, and the pains observed in carboplatin-induced PN models were significantly suppressed by the TRPA1 antagonist HC-030031 without a change in the level of TRPA1 protein. In cells expressing human TRPA, carboplatin had no effects on changes in intracellular Ca concentration ([Ca]); however, carboplatin pretreatment enhanced the increase in [Ca] induced by the TRPA1 agonist, allyl isothiocyanate (AITC). These effects were suppressed by an inhibitor of protein kinase A (PKA). The PKA activator forskolin enhanced AITC-induced increase in [Ca] and carboplatin itself increased intracellular cyclic adenosine monophosphate (cAMP) levels. Moreover, inhibition of A-kinase anchoring protein (AKAP) significantly decreased the carboplatin-induced enhancement of [Ca] induced by AITC and improved carboplatin-induced mechanical allodynia and cold hyperalgesia. These results suggested that carboplatin induced mechanical allodynia and cold hyperalgesia by increasing sensitivity to TRPA1 via the cAMP-PKA-AKAP pathway.
Learn More >Intrathecal treatment with recombinant high-mobility group box-1 (rHMGB1) in naïve mice leads to a persistent and significantly decreased hind paw withdrawal threshold to mechanical stimuli, suggesting that spinal HMGB1 evokes abnormal pain processing. By contrast, repeated intrathecal treatment with anti-HMGB1 antibody significantly reverses hind paw mechano-hypersensitivity in mice with a partial sciatic nerve ligation (PSNL). By contrast, the cellular mechanism by which spinal HMGB1 induces neuropathic pain has yet to be fully elaborated. The current study tested the hypothesis that spinal HMGB1 could induce mechanical hypersensitivity through the activation of specific receptor in glial cells. Intrathecal pretreatment with toll-like receptor (TLR) 4 inhibitors, but not TLR5, receptor for advanced glycation end-products and C-X-C chemokine receptor type 4 inhibitors, prevented rHMGB1-evoked mechanical hypersensitivity. Activation of spinal astrocytes appears to be crucial for the mechanism of action of rHMGB1 in naïve mice, as intrathecal pretreatment with astrocytic inhibitors prevented the rHMGB1-induced mechanical hypersensitivity. Within activated astrocytes, interleukin-1β (IL-1β) was up-regulated, which was prevented with blockade of TLR4. Interleukin-1β appears to be secreted by activated astrocytes, as IL-1β neutralizing antibody prevented rHMGB1-induced mechanical hypersensitivity. Furthermore, intrathecal pretreatment with either MK801 or gabapentin prevented the rHMGB1-induced mechanical hypersensitivity, suggesting roles for spinal glutamate and the N-methyl-D-aspartate receptor in the mediation of rHMGB1-induced mechanical hypersensitivity. Thus, the current findings suggest that spinal HMGB1 upregulates IL-1β in spinal astrocytes through a TLR4-dependent pathway and increases glutamatergic nociceptive transduction. These spinal mechanisms could be key steps that maintain neuropathic pain. This article is protected by copyright. All rights reserved.
Learn More >Migraine is a complex disorder that is characterized by an assortment of neurological and systemic effects. While headache is the most prominent feature of migraine, a host of symptoms affecting many physiological functions are also observed before, during, and after an attack. Furthermore, migraineurs are heterogeneous and have a wide range of responses to migraine therapies. The recent approval of calcitonin gene-related-peptide based therapies has opened up the treatment of migraine and generated a renewed interest in migraine research and discovery. Ongoing advances in migraine research have identified a number of other promising therapeutic targets for this disorder. In this review, we highlight emergent treatments within the following biological systems: pituitary adenylate cyclase activating peptdie, 2 non-mu opioid receptors that have low abuse liability – the delta and kappa opioid receptors, orexin, and nitric oxide-based therapies. Multiple mechanisms have been identified in the induction and maintenance of migraine symptoms; and this divergent set of targets have highly distinct biological effects. Increasing the mechanistic diversity of the migraine tool box will lead to more treatment options and better patient care.
Learn More >High-frequency burst-like electrical conditioning stimulation (HFS) applied to human skin induces an increase in mechanical pinprick sensitivity of the surrounding unconditioned skin (a phenomenon known as secondary hyperalgesia). The present study assessed the effect of frequency of conditioning stimulation on the development of this increased pinprick sensitivity in humans. In a first experiment we compared the increase in pinprick sensitivity induced by HFS using monophasic non-charge-compensated pulses and biphasic charge-compensated pulses. High-frequency stimulation, traditionally delivered using non-charge-compensated square-wave pulses, may induce a cumulative depolarization of primary afferents and/or changes in pH at the electrode-tissue interface due to the accumulation of a net residue charge after each pulse. Both could contribute to the development of the increased pinprick sensitivity in a frequency-dependent fashion. We found no significant difference in the increase in pinprick sensitivity between HFS delivered using charge-compensated and non-charge-compensated pulses, indicating that the possible contribution of charge accumulation when non-charge-compensated pulses are used is negligible. In a second experiment, we assessed the effect of different frequencies of conditioning stimulation (5, 20, 42 and 100 Hz) using charge-compensated pulses on the development of increased pinprick sensitivity. The maximal increase in pinprick sensitivity was observed at intermediate frequencies of stimulation (20 and 42 Hz). It is hypothesized that the stronger increase in pinprick sensitivity at intermediate frequencies may be related to the stronger release of substance P and/or neurokinin-1 receptor activation expressed at lamina I neurons following C-fiber stimulation.
Learn More >Headache disorders are among the most common and disabling medical conditions worldwide. Pharmacologic acute and preventive treatments are often insufficient and poorly tolerated, and the majority of patients are unable to adhere to their migraine treatments due to these issues. With improvements in our understanding of migraine and cluster headache pathophysiology, neuromodulation devices have been developed as safe and effective acute and preventive treatment options. In this review, we focus on neuromodulation devices that have been studied for migraine and cluster headache, with special attention to those that have gained food and drug administration (FDA) clearance. We will also explore how these devices can be used in patients who might have limited pharmacologic options, including the elderly, children, and pregnant women.
Learn More >The potential role of the intestinal microbiota in modulating visceral pain has received increasing attention during recent years. This has led to the identification of signaling pathways that have been implicated in communication between gut bacteria and peripheral pain pathways. In addition to the well-characterised impact of the microbiota on the immune system, which in turn affects nociceptor excitability, bacteria can modulate visceral afferent pathways by effects on enterocytes, enteroendocrine cells and the neurons themselves. Proteases produced by bacteria, or by host cells in response to bacteria, can increase or decrease the excitability of nociceptive dorsal root ganglion (DRG) neurons depending on the receptor activated. Short chain fatty acids generated by colonic bacteria are involved in gut-brain communication, and intracolonic short chain fatty acids have pro-nociceptive effects in rodents but may be anti-nociceptive in humans. Gut bacteria modulate the synthesis and release of enteroendocrine cell mediators including serotonin and glucagon-like peptide-1, which activate extrinsic afferent neurons. Deciphering the complex interactions between visceral afferent neurons and the gut microbiota may lead to the development of improved probiotic therapies for visceral pain.
Learn More >Central sensitization induces pain augmentation in chronic pain states. An analogous mechanism is speculated for chronic pruritus. This study compared patients with chronic pruritus (n = 79) of different origins (atopic dermatitis, chronic pruritus on non-lesional skin, chronic prurigo) and healthy controls (HC, n = 54) with regard to itch intensity and qualities of sensory symptoms after selective peripheral nerve fibre activation by electrical stimulation at 5 Hz (surrogate for C-fibre function) and 2,000 Hz (surrogate for Aβ-fibre function) using a Neurometer®. Electrically-induced itch was more intense in patients with chronic pruritus than in HC, but patients with chronic pruritus did not report "itch" more often than HC at 5 Hz. Stimulation at 2,000 Hz induced more pricking and tingling, but less throbbing in patients with chronic pruritus compared with HC. Treatment with cooling compound reduced clinical and experimental itch, but did not alter the distribution of sensory symptoms. These data show hyperknesis in chronic pruritus of various origins, arguing for common central sensitization mechanisms.
Learn More >The migraine brain seems to undergo cyclic fluctuations of sensory processing. For instance, during the preictal phase, migraineurs experience symptoms and signs of altered pain perception as well as other well-known premonitory CNS-symptoms. In the present study we measured EEG-activation to non-painful motor and sensorimotor tasks in the different phases of the migraine cycle by longitudinal measurements of beta event related desynchronization (beta-ERD).
Learn More >Cluster headache (CH) can present with migrainous symptoms such as nausea, photophobia, and phonophobia. In addition, an overlap between CH and migraine has been reported. This study aimed to determine the differences in the characteristics of CH according to the presence of comorbid migraine.
Learn More >Previous studies of prognosis for women with Fibromyalgia (FM) or chronic widespread pain (CWP) show contradictory results. However, some women appear to improve in pain and other core symptoms over time. There is limited knowledge about predictors of substantial improvement in pain intensity over a longer period of time. The primary objective of this study was to investigate the natural course of pain intensity and distribution of pain over 10 to 12 years in a cohort of 166 women with FM or CWP. Secondarily we wanted to investigate predictors of substantial improvement (50%) in pain intensity after 10 to 12 years.
Learn More >The aim of this study was to evaluate the possible association between polymorphisms in the catechol-O-methyltransferase (COMT) and β2-adrenergic receptor (ADRB2) genes and muscular temporomandibular disorders (TMD). This was a case-control study. Individuals were evaluated using the Research Diagnostic Criteria for Temporomandibular Disorders and were divided into three groups: unaffected (no TMD) (n=154); exclusively muscular TMD (n=49); exclusively articular TMD (n=49). Genomic DNA was obtained from saliva samples, and single nucleotide polymorphisms in the COMT (rs165774, rs6269, rs9332377) and ADRB2 (rs2053044, rs1042713, rs1042714) genes were investigated. The TT genotype for the COMT rs9332377 gene was highly associated with the presence of muscular TMD (P= 0.03). With respect to the ADRB2 gene, the non-polymorphic AA genotype in the rs1042713 region was more prevalent in the articular TMD group than in the muscular TMD group (P= 0.05). This study supports the hypothesis that alterations in the COMT and ADRB2 genes influence the muscular pathophysiology.
Learn More >The pituitary adenylate cyclase-activating polypeptide (PACAP)-selective PAC1 receptor (PAC1R, ADCYAP1R1) is a member of the vasoactive intestinal peptide (VIP)/secretin/glucagon family of G protein-coupled receptors (GPCRs). PAC1R has been shown to play crucial roles in the central and peripheral nervous systems. The activation of PAC1R initiates diverse downstream signal transduction pathways, including adenylyl cyclase, phospholipase C, MEK/ERK and Akt pathways that regulate a number of physiological systems to maintain functional homeostasis. Accordingly, at times of tissue injury or insult, PACAP/PAC1R activation of these pathways can be trophic to blunt or delay apoptotic events and enhance cell survival. Enhancing PAC1R signaling under these conditions has the potential to mitigate cellular damages associated with cerebrovascular trauma (including stroke), neurodegeneration (such as Parkinson's and Alzheimer's disease) or peripheral organ insults. Conversely, maladaptive PACAP/PAC1R signaling has been implicated in a number of disorders, including stress-related psychopathologies (i.e., depression, posttraumatic stress disorder, and related abnormalities), chronic pain and migraine, and metabolic diseases; abrogating PAC1R signaling under these pathological conditions represent opportunities for therapeutic intervention. Given the diverse PAC1R-mediated biological activities, the receptor has emerged as a relevant pharmaceutical target. In this review, we first describe the current knowledge regarding the molecular structure, dynamics, and function of PAC1R. Then, we discuss the roles of PACAP and PAC1R in the activation of a variety of signaling cascades related to the physiology and diseases of the nervous system. Lastly, we examine current drug design and development of peptides and small molecules targeting PAC1R based on a number of structure-activity relationship studies and key pharmacophore elements. At present, the rational design of PAC1R-selective peptide or small-molecule therapeutics is largely hindered by the lack of structural information regarding PAC1R activation mechanisms, the PACAP-PAC1R interface, and the core segments involved in receptor activation. Understanding the molecular basis governing the PACAP interactions with its different cognate receptors will undoubtedly provide a basis for the development and/or refinement of receptor-selective therapeutics.
Learn More >Pain during, and especially after, cancer remains underestimated and undertreated. Moreover, both patients and health care providers are not aware of potential benefits of rehabilitation strategies for the management of pain during and following cancer treatment. In this paper, we firstly provided a state-of-the-art overview of the best evidence rehabilitation modalities for patients having (persistent) pain during and following cancer treatment, including educational interventions, specific exercise therapies, manual therapies, general exercise therapies and mind-body exercise therapies. Secondly, the findings were summarized from a clinical perspective and discussed from a scientific perspective. In conclusion, best evidence suggests that general exercise therapy has small pain-relieving effects. Supporting evidence for mind-body exercise therapy is available only in breast cancer patients. At this moment, there is a lack of high-quality evidence to support the use of specific exercises and manual therapy at the affected region for pain relief during and after cancer treatment. No clinically relevant results were found in favor of educational interventions restricted to a biomedical approach of pain. To increase available evidence these rehabilitation modalities should be applied according to, and within, a multidisciplinary biopsychosocial pain management approach. Larger, well-designed clinical trials tailored to the origin of pain and with proper evaluation of pain-related functioning and the patient's pain experience are needed.
Learn More >The Mind-Body Medicine (MBM) program at the Naval Medical Center San Diego, created in collaboration with the Benson-Henry Institute for Mind Body Medicine and the Home Base Program at Massachusetts General Hospital, is a 7-week program designed to facilitate stress management habits into patient treatment plans. The aim of this study is to test the feasibility and acceptability of a mind-body program for service members and veterans. Participants (N = 239) were primarily active duty service members of the U.S. Navy and Marine Corps reporting significant perceived stress (Stress Resiliency (SR) group; n = 124), or meeting criteria for chronic pain (Pain Management (PM) group; n = 115). Participants completed measures at preprogram and post-program assessing for perceived stress, pain, functional impairment, quality of life, and psychological and somatic symptoms. Changes in self-reported psychological symptoms and knowledge and practice of mind-body principles were examined. Participants across groups had significant improvement in most outcomes (perceived stress, response to stressful experience, functional impairment, sleep disturbance, depression, PTSD, and anxiety symptoms; and each quality of life domain aside from social relationships), with p values < .0017 (Bonferroni corrected level of significance). The SR group demonstrated significant improvements in primary outcomes of perceived stress and response to stressful experience, and the PM group demonstrated significant improvement in pain severity, but not perceived stress. Significant change was observed in knowledge and practice of mind-body medicine principles, and high satisfaction was reported. Results suggest that a mind-body program may improve physical and psychological functioning for service members, including those facing significant perceived stress and chronic pain. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Learn More >Low back pain is the largest contributor to disability worldwide. The role of body composition as a risk factor for back pain remains unclear. Our aim was to examine the relationship between fat mass and fat distribution on back pain intensity and disability using validated tools over 3 years.
Learn More >Medication-overuse headache is defined as headache occurring on more than 15 days in a month in people with pre-existing primary headache, and developing as a consequence of regular overuse of acute headache treatments. Medication-overuse headache is common in general neurology clinics and can be difficult to manage. Most patients have a background of migraine, which has slowly transformed over months and years from the episodic to chronic form; with this comes an increased use of acute migraine treatment. This paper identifies who is at risk of developing medication-overuse headache, and reviews preventive measures and current treatment strategies.
Learn More >Sciatica is a painful condition managed by a stepped care approach for most patients. Currently, there are no decision-making tools to guide matching care pathways for patients with sciatica without evidence of serious pathology, early in their presentation. This study sought to develop an algorithm to subgroup primary care patients with sciatica, for initial decision-making for matched care pathways, including fast-track referral to investigations and specialist spinal opinion.
Learn More >Nummular headache is a primary headache characterised by superficial, coin-shaped pain. Superficial sensory fibre dysfunction might be involved in its pathophysiology. Considering the mechanism of action of onabotulinumtoxinA, it could be a reasonable option in treatment of nummular headache. The aim of the study was to evaluate the efficacy and tolerability of onabotulinumtoxinA in a series of nummular headache patients.
Learn More >Chronic inflammatory pain is one of the most common complaints that seriously affects patients' quality of life. Previous studies have demonstrated that the analgesic effect of electroacupuncture (EA) stimulation on inflammatory pain is related to its frequency. In this study, we focused on whether the analgesic effects of EA are related to the period of stimulation. Purinergic receptor P2X3 (P2X3) is involved in the pathological process underlying chronic inflammatory pain and neuropathic pain. We hypothesized that 100 Hz EA stimulation alleviated Freund's complete adjuvant (CFA) induced inflammatory pain via regulating P2X3 expression in the dorsal root ganglion (DRG) and/or spinal cord dorsal horn (SCDH). We also assumed that the analgesic effect of EA might be related to the period of stimulation. We found that both short-term (three day) and long-term (14 day) 100 Hz EA stimulation effectively increased the paw withdrawal threshold (PWT) and reversed the elevation of P2X3 in the DRG and SCDH of CFA rats. However, the analgesic effects of 100 Hz EA were not dependent on the period of stimulation. Moreover, P2X3 inhibition or activation may contribute to or attenuate the analgesic effects of 100 Hz EA on CFA-induced inflammatory pain. This result indicated that EA reduced pain hypersensitivity through P2X3 modulation.
Learn More >Chronic headache is one of the most common pain conditions, often leading to symptomatic drug overuse. The aim of this study was to provide data on symptomatic drug consumption in an Italian outpatient population and to describe how the clinical picture of headache may change after headache experts take charge of the care of affected individuals. A total of 199 adults complaining of chronic headache were recruited through 32 pharmacies in the Pavia health district. Participants underwent four evaluations: a baseline assessment (T0) and three follow-up evaluations performed by a neurologist at 3, 6, and 12 months (T3, T6, and T12, respectively). On each occasion, they underwent a complete neurological assessment and received therapeutic adjustments to achieve better management of their headache. On the basis of a preliminary telephone interview, the prevalence rates of chronic headache and medication overuse headache (MOH) were 16 and 12%, respectively. At 12 months of follow-up, we observed a significant decrease in the frequency of attacks (T0: 9 ± 9/month vs. T12: 2 ± 2/month; < 0.001), in the number of days/month with headache (T0: 11 ± 9 vs. T12: 4 ± 4; < 0.001) and in single attack duration (T0: 34 ± 30 h vs. T12: 10 ± 19 h; < 0.001). Careful headache management resulted in a significant decrease in analgesic consumption (T0: 12 ± 16 vs. T12: 4 ± 6 doses/month; = 0.014) and a significant increase in quality of life, measured using the Migraine Disability Assessment Scale (MIDAS) and Headache Under-Response to Treatment (HURT) scales ( < 0.001). Headache management by a specialist is more effective than self-treatment, resulting in an overall benefit for headache patients.
Learn More >MINI: This study sought to examine if early care-coordination between a patient's surgeon and usual prescriber of long-term opioid therapy could mitigate high-risk opioid prescribing following surgery. In this national cohort, 74.3% of chronic opioid users were exposed to episodes of high risk prescribing following surgery. Having a usual preoperative opioid prescriber and visiting this prescriber within 30 days after surgery was associated with decreased odds of having multiple prescribers in the postoperative period.
Learn More >Neuroimmune interactions are important in the pathophysiology of many chronic inflammatory diseases, particularly those associated with alterations in sensory processing and pain. Mast cells and sensory neuron nerve endings are found in areas of the body exposed to the external environment, both are specialized to sense potential damage by injury or pathogens and signal to the immune system and nervous system, respectively, to elicit protective responses. Cell adhesion molecule 1 (CADM1), also known as SynCAM1, has previously been identified as an adhesion molecule which may couple mast cells to sensory neurons however, whether this molecule exerts a functional as well as structural role in neuroimmune cross-talk is unknown. Here we show, using a newly developed co-culture system consisting of murine bone marrow derived mast cells (BMMC) and adult sensory neurons isolated from dorsal root ganglions (DRG), that CADM1 is expressed in mast cells and adult sensory neurons and mediates strong adhesion between the two cell types. Non-neuronal cells in the DRG cultures did not express CADM1, and mast cells did not adhere to them. The interaction of BMMCs with sensory neurons was found to induce mast cell degranulation and IL-6 secretion and to enhance responses to antigen stimulation and activation of FcεRI receptors. Secretion of TNFα in contrast was not affected, nor was secretion evoked by compound 48/80. Co-cultures of BMMCs with HEK 293 cells, which also express CADM1, while also leading to adhesion did not replicate the effects of sensory neurons on mast cells, indicative of a neuron-specific interaction. Application of a CADM1 blocking peptide or knockdown of CADM1 in BMMCs significantly decreased BMMC attachment to sensory neurites and abolished the enhanced secretory responses of mast cells. In conclusion, CADM1 is necessary and sufficient to drive mast cell-sensory neuron adhesion and promote the development of a microenvironment in which neurons enhance mast cell responsiveness to antigen, this interaction could explain why the incidence of painful neuroinflammatory disorders such as irritable bowel syndrome (IBS) are increased in atopic patients.
Learn More >Many women with endometriosis continue to have pelvic pain despite optimal surgical and hormonal treatment; some also have palpable pelvic floor muscle spasm. We describe changes in pain, spasm, and disability after pelvic muscle onabotulinumtoxinA injection in women with endometriosis-associated pelvic pain, a specific population not addressed in prior pelvic pain studies on botulinum toxin.
Learn More >Certain perceptual measures have been proposed as indirect assays of brain neurochemical status in people with migraine. One such measure is binocular rivalry, however, previous studies have not measured rivalry characteristics and brain neurochemistry together in people with migraine. This study compared spectroscopy-measured levels of GABA and Glx (glutamine and glutamate complex) in visual cortex between 16 people with migraine and 16 non-headache controls, and assessed whether the concentration of these neurochemicals explains, at least partially, inter-individual variability in binocular rivalry perceptual measures. Mean Glx level was significantly reduced in migraineurs relative to controls, whereas mean occipital GABA levels were similar between groups. Neither GABA levels, nor Glx levels correlated with rivalry percept duration. Our results thus suggest that the previously suggested relationship between rivalry percept duration and GABAergic inhibitory neurotransmitter concentration in visual cortex is not strong enough to enable rivalry percept duration to be reliably assumed to be a surrogate for GABA concentration, at least in the context of healthy individuals and those that experience migraine.
Learn More >Neuropathic pain after spinal cord injury (SCI) is a complex condition that responds poorly to usual treatments. Cell transplantation represents a promising therapy; nevertheless, the ideal cell type in terms of neurogenic potential and effectiveness against pain remains largely controversial. Here, we evaluated the ability of fetal neural stem cells (fNSC) to relieve chronic pain and, secondarily, their effects on motor recovery. Adult Wistar rats with traumatic SCI were treated, 10 days after injury, with intra-spinal injections of culture medium (sham) or fNSCs extracted from telencephalic vesicles (TV group) or the ventral medulla (VM group) of E/14 embryos. Sensory (von Frey filaments and hot plate) and motor (the Basso, Beattie, Bresnahan locomotor rating scale and inclined plane test) assessments were performed during 8 weeks. Thereafter, spinal cords were processed for immunofluorescence and transplanted cells were quantified by stereology. The results showed improvement of thermal hyperalgesia in the TV and VM groups at 4 and 5 weeks after transplantation, respectively. Moreover, mechanical allodynia improved in both the TV and VM groups at 8 weeks. No significant motor recovery was observed in the TV or VM groups compared with sham. Stereological analyses showed that ~70% of TV and VM cells differentiated into NeuN neurons, with a high proportion of enkephalinergic and GABAergic cells in the TV group and enkephalinergic and serotoninergic cells in the VM group. Our study suggests that neuronal precursors from TV and VM, once implanted into the injured spinal cord, maturate into different neuronal subtypes, mainly GABAergic, serotoninergic, and enkephalinergic, and all subtypes alleviate pain, despite no significant motor recovery. The study was approved by the Animal Ethics Committee of the Medical School of the University of São Paulo (protocol number 033/14) on March 4, 2016.
Learn More >To measure and compare the total and normalised tibial nerve movements during forward bending in patients with and without failed back surgery syndrome (FBSS) and persistent leg pain following anatomically successful lumbar decompression surgery and demonstrated no psychological stress. Nerve pathomechanics may contribute to FBSS with persistent leg pain following anatomically successful lumbar decompression surgery.
Learn More >