I am a
Home I AM A Search Login

Papers of the Week – Editors’ Picks


Share this
Pain Research Forum Navigation
CONTENT
Filter
2025 Apr 16 - Neuron
Editor's Pick

Astrocytic GPR37L1: A new guardian against the onset and chronicity of neuropathic pain.

Authors: Kohro Y, Tsuda M
Read Abstract
In this issue of Neuron, Xu et al. demonstrate that activating GPR37L1, a G-protein-coupled receptor that negatively regulates astrocytes, suppresses the onset and maintenance of neuropathic pain, an intractable chronic pain caused by nerve damage, thereby serving as a therapeutic target.

2025 Apr 11 - Cell Rep
Editor's Pick

Cannabinoid CB2 receptor controls chronic itch by regulating spinal microglial activation and synaptic transmission

Authors: Xu K, Liu X, Zeng Q, Liu Y, Ji L, Wu Y, Wu J, Chen Y, Li Y, Huang S, Jiang C, Hong X, Wu C, Wang Z
Read Abstract

Chronic itch is a devastating clinical condition, and its central mechanisms remain poorly understood. We reported that spinal cannabinoid receptor type 2 (CB2R) activation exerts antipruritic effects and that itch escalates in mice lacking Cnr2 in mouse models of dermatitis and psoriasis. In the spinal cord, CB2R is mainly expressed in microglia, and microglial ablation or inhibition attenuated chronic itch, suggesting that microglial activation contributes to chronic itch. Particularly, conditional Cnr2 deletion in microglia also exacerbated chronic itch in mice. Single-cell RNA sequencing and molecular mechanistic studies suggest that CB2R activation reprogrammed microglia by inducing anti-inflammatory suppressor of cytokine signaling 3 (SOCS3) and reducing itch-related p38 and signal transducer and activator of transcription 1 (STAT1) phosphorylation. Finally, CB2R activation suppressed neuronal excitability and synaptic transmission in gastrin-releasing peptide (GRP)/GRP receptor (GRPR) interneurons and ascending projection neurons by inhibiting microglia-derived cytokines. These findings demonstrate that microglial activation contributes to chronic itch, while CB2R activation in microglia alleviates chronic itch via neuro-immune interactions.


2025 Apr 10 - Biochemistry
Editor's Pick

Toward Predictive Models of Biased Agonists of the Mu Opioid Receptor.

Authors: Tun-Rosado FJ, Abreu-Martínez EE, Magdaleno-Rodriguez A, Martinez-Mayorga K
Read Abstract

The mu-opioid receptor (MOR), a member of the G-protein-coupled receptor superfamily, is pivotal in pain modulation and analgesia. Biased agonism at MOR offers a promising avenue for developing safer opioid therapeutics by selectively engaging specific signaling pathways. This study presents a comprehensive analysis of biased agonists using a newly curated database, BiasMOR, comprising 166 unique molecules with annotated activity data for GTPγS, cAMP, and β-arrestin assays. Advanced structure-activity relationship (SAR) analyses, including network similarity graphs, maximum common substructures, and activity cliff identification, reveal critical molecular features underlying bias signaling. Modelability assessments indicate high suitability for predictive modeling, with RMODI indices exceeding 0.96 and SARI indices highlighting moderately continuous SAR landscapes for cAMP and β-arrestin assays. Interaction patterns for biased agonists are discussed, including key residues such as D, Y, and Y. Comparative studies of enantiomer-specific interactions further underscore the role of ligand-induced conformational states in modulating signaling pathways. This work underscores the potential of combining computational and experimental approaches to advance the understanding of MOR-biased signaling, paving the way for safer opioid therapies. The database provided here will serve as a starting point for designing biased mu opioid receptor ligands and will be updated as new data become available. Increasing the repertoire of biased ligands and analyzing molecules collectively, as the database described here, contributes to pinpointing structural features responsible for biased agonism that can be associated with biological effects still under debate.


2025 Apr 10 - Clin J Pain
Editor's Pick

Complex Regional Pain Syndrome: Navigating Diagnostic Complexities.

Authors: Raasveld FV, Wolff M, Luan A, Hao D, Valerio IL, Eberlin KR
Read Abstract

Complex Regional Pain Syndrome (CRPS) presents significant diagnostic challenges due to its diverse clinical presentation. This study aims to describe the diagnostic trajectory of patients labeled with CRPS, focusing on referral patterns, application of the Budapest criteria, and accuracy of CRPS diagnosis.


2025 Apr 14 - eNeuro
Editor's Pick

Electrical Stimulation of the M1 Activates Somatostatin Interneurons in the S1: Potential Mechanisms Underlying Pain Suppression.

Authors: Park J, Kim YG, Kim T, Baek M
Read Abstract

Chronic pain affects millions globally, yet no universally effective treatment exists. The primary motor cortex (M1) has been a key target for chronic pain therapies, with electrical stimulation of the M1 (eMCS) showing promise. However, the mechanisms underlying M1-mediated analgesic effects are not fully understood. We investigated the role of the primary somatosensory cortex (S1) in M1-mediated analgesia using a neuropathic pain mouse model. In this model, neuropathic pain is associated with increased spontaneous activity of layer V pyramidal neurons (LV-PNs) in the S1, partly attributed to the reduced activity of somatostatin-expressing inhibitory neurons (SST INs), which normally suppress LV-PNs. While manipulation of either LV-PNs or SST INs has been shown to alleviate pain, the role of S1 in M1-mediated analgesia has not been identified. Using multichannel silicon probes, we applied eMCS to neuropathic mice and observed significant analgesia. Histological analyses revealed that eMCS activated SST INs and suppressed hyperactivity of LV-PNs in the S1, suggesting that eMCS suppresses pain by modulating S1 neuronal circuits, alongside other pain-related regions. Notably, eMCS induced long-lasting analgesia, persisting for at least two days post-stimulation. These findings implicate S1 as a critical mediator of eMCS-induced analgesia and suggest eMCS as a potential durable therapeutic strategy for chronic pain. Chronic pain is a devastating disorder that affects over 25% of the global population. The lack of universally and entirely effective treatments, combined with severe social and economic burdens posed by the side effects of current analgesics, underscores the need to explore multifaceted approaches. In this study, we applied a silicon probe to target layer 5 of the M1 region of mice and delivered electrical stimulation to a chronic constriction injury mouse model. Our findings demonstrated that eMCS induced analgesic effects on mechanical stimuli, with the effect notably persisting for at least two days after the cessation of eMCS. As a potential mechanism, we identified SST+ neuronal activation in S1, along with other previously known brain regions influenced by eMCS.


2025 Apr 17 - Nat Commun
Editor's Pick

A neural circuit for sex-dependent conditioned pain hypersensitivity in mice.

Authors: Zhang M, Ni Z, Ma J, Liu A, Liu Y, Lou Q, Dong WY, Zhang Z, Li J, Cao P
Read Abstract

The neural mechanisms underlying sex-specific pain, in which males and females exhibit distinct responses to pain, remain poorly understood. Here we show that in a mouse model of male-specific pain hypersensitivity response to pain conditioning environments (contextual pain hypersensitivity model), elevated free-testosterone leads to hyperactivity of glutamatergic neurons in the medial preoptic area (Glu) through activation of androgen receptor signaling, which in turn induces contextual pain hypersensitivity in male mice. Although not observed in naïve female mice, this pain phenotype could be induced in females via chronic administration of testosterone propionate. In addition, Glu neurons send excitatory inputs to GABAergic neurons in the ventrolateral periaqueductal gray (GABA) that are required for contextual pain hypersensitivity. Our study thus demonstrates that testosterone/androgen receptor signaling enhances Glu→ GABA pathway activity, which drives a male-specific contextual pain hypersensitivity, providing insight into the basis of sexually dimorphic pain response.


2025 Apr 10 - Neuron
Editor's Pick

A sensory-motor-sensory circuit underlies antinociception ignited by primary motor cortex in mice.

Authors: Wang F, Tian ZC, Ding H, Yang XJ, Wang FD, Ji RX, Xu L, Cao ZX, Ma SB, Zhang M, Cui YT, Cong XY, Chu WG, Li ZZ, Han WJ, Gao YH, Yu YW, Zhao XH, Wang WT, Xie RG, Wu SX, Luo C
Read Abstract

Sensory-motor integration is crucial in the processing of chronic pain. The primary motor cortex (M1) is emerging as a promising target for chronic pain treatment. However, it remains elusive how nociceptive sensory inputs influence M1 activity and how rectifying M1 defects, in turn, regulates pain processing at cellular and network levels. We show that injury/inflammation leads to hypoactivity of M1 pyramidal neurons by excitation-inhibition imbalance between the primary somatosensory cortex (S1) and the M1. The impaired M1 output further weakens inputs to excitatory parvalbumin neurons of the lateral hypothalamus (LH) and impairs the descending inhibitory system, hence exacerbating spinal nociceptive sensitivity. When rectifying M1 defects with repetitive transcranial magnetic stimulation (rTMS), the imbalance of the S1-M1 microcircuitry can be effectively reversed, which aids in restoring the ability of the M1 to trigger the descending inhibitory system, thereby alleviating nociceptive hypersensitivity. Thus, a sensory-motor-sensory loop is identified for pain-related interactions between the sensory and motor systems and can be potentially exploited for treating chronic pain.


2025 Apr 18 - Sci Adv
Editor's Pick

Earlier onset of chemotherapy-induced neuropathic pain in females by ICAM-1-mediated accumulation of perivascular macrophages.

Authors: Chen L, Zou X, Liu CC, Yan P, Deng J, Wang C, Chen MY, Tang XQ, Shi JM, Xin WJ, Zhang XZ, Feng X, Xu T, Xie JD
Read Abstract

Sex differences in the pathogenesis of a variety of diseases have drawn increasing attention. However, it remains unclear whether such differences exist in chemotherapy-induced neuropathic pain. Here, we conducted a retrospective analysis of clinical case data and found that peripheral sensory disorders occurred earlier in females than in males following bortezomib (BTZ) treatment in patients with multiple myeloma. BTZ treatment led to an early elevation of intercellular adhesion molecule-1, which triggered the infiltration of peripheral monocytes into the perivascular region of the spinal cord in female mice. The CC-chemokine ligand 1 released by infiltrating macrophages directly activated neurons or indirectly activated neurons by enhancing the astrocyte activity, ultimately leading to the earlier onset of BTZ-induced neuropathic pain in females. Together, clarifying the mechanism underlying the earlier onset of BTZ-induced neuropathic pain will contribute to the precise treatment of multiple myeloma in females.


2025 Apr 08 - Cell Rep
Editor's Pick

The dorsal column nuclei scale mechanical sensitivity in naive and neuropathic pain states.

Authors: Upadhyay A, Gradwell MA, Vajtay TJ, Conner J, Sanyal AA, Azadegan C, Patel KR, Thackray JK, Bohic M, Imai F, Ogundare SO, Yoshida Y, Abdus-Saboor I, Azim E, Abraira VE
Read Abstract

During pathological conditions, tactile stimuli can aberrantly engage nociceptive pathways leading to the perception of touch as pain, known as mechanical allodynia. The brain stem dorsal column nuclei integrate tactile inputs, yet their role in mediating tactile sensitivity and allodynia remains understudied. We found that gracile nucleus (Gr) inhibitory interneurons and thalamus-projecting neurons are differentially innervated by primary afferents and spinal inputs. Functional manipulations of these distinct Gr neuronal populations bidirectionally shifted tactile sensitivity but did not affect noxious mechanical or thermal sensitivity. During neuropathic pain, Gr neurons exhibited increased sensory-evoked activity and asynchronous excitatory drive from primary afferents. Silencing Gr projection neurons or activating Gr inhibitory neurons in neuropathic mice reduced tactile hypersensitivity, and enhancing inhibition ameliorated paw-withdrawal signatures of neuropathic pain and induced conditioned place preference. These results suggest that Gr activity contributes to tactile sensitivity and affective, pain-associated phenotypes of mechanical allodynia.


2025 Apr 07 - Cell
Editor's Pick

Peripheral nervous system microglia-like cells regulate neuronal soma size throughout evolution

Authors: Wu Z, Wang Y, Chen W, Sun H, Chen X, Li X, Wang Z, Liang W, Wang S, Luan X, Li Y, Huang S, Liang Y, Zhang J, Chen Z, Wang G, Gao Y, Liu Y, Wang J, Liu Z, Shi P, Liu C, Lv L, Hou A, Wu C, Yao C, Hong Z, Dai J, Lu Z, Pan F, Chen X, Kettenmann H, Amit I, Speakman JR, Chen Y, Ginhoux F, Cui R, Huang T, Li H
Read Abstract

Microglia, essential in the central nervous system (CNS), were historically considered absent from the peripheral nervous system (PNS). Here, we show a PNS-resident macrophage population that shares transcriptomic and epigenetic profiles as well as an ontogenetic trajectory with CNS microglia. This population (termed PNS microglia-like cells) enwraps the neuronal soma inside the satellite glial cell envelope, preferentially associates with larger neurons during PNS development, and is required for neuronal functions by regulating soma enlargement and axon growth. A phylogenetic survey of 24 vertebrates revealed an early origin of PNS microglia-like cells, whose presence is correlated with neuronal soma size (and body size) rather than evolutionary distance. Consistent with their requirement for soma enlargement, PNS microglia-like cells are maintained in vertebrates with large peripheral neuronal soma but absent when neurons evolve to have smaller soma. Our study thus reveals a PNS counterpart of CNS microglia that regulates neuronal soma size during both evolution and ontogeny.