I am a
Home I AM A Search Login

Pharmacology/Drug Development

Share this

TRPV1 and MOR working in tandem: implications for pain and opioids use.

Learn More >

The Neuropeptide Y Y2 receptor is co-expressed with Nppb in primary afferent neurons and Y2 activation reduces histaminergic and IL-31-induced itch.

Itch stimuli are detected by specialized primary afferents, which convey the signal to the spinal cord, but how itch transmission is regulated is still incompletely known. Here, we investigated the roles of the neuropeptide Y (NPY)/Y2 receptor system on scratch behavior. The inhibitory Y2 receptor is expressed on mouse primary afferents and intrathecal administration of the Y2 agonist peptide YY (PYY)3-36 reduced scratch episode frequency and duration induced by compound 48/80, an effect that could be reversed by intrathecal pre-administration of the Y2 antagonist BIIE0246. Also, scratch episode duration induced by histamine could be reduced by PYY3-36. In contrast, scratch behavior induced by α-methyl-5HT, SLIGRL, chloroquine, topical dust mite extract, or mechanical itch induced by von Frey filaments was unaffected by stimulation of Y2. Primary afferent neurons expressing the Npy2r gene were found to co-express itch-associated markers such as natriuretic peptide precursor b, oncostatin M receptor and interleukin (IL) 31 receptor A. Accordingly, intrathecal PYY3-36 reduced the scratch behavior induced by IL-31. Our findings imply that the NPY/Y2 system reduces histaminergic and IL-31-associated itch through presynaptic inhibition of a subpopulation of itch-associated primary afferents. SIGNIFICANCE STATEMENT: The spinal neuropeptide Y system dampens scratching behavior induced by histaminergic compounds and interleukin 31, a cytokine involved in atopic dermatitis, through interactions with the Y2 receptor. The Y2 receptor is expressed by primary afferent neurons that are rich in itch-associated neurotransmitters and receptors such as somatostatin, natriuretic peptide precursor b and interlekin 31 receptors.

Learn More >

Efficacy and Safety of ASP0819 in Patients with Fibromyalgia: Results of a Proof-of-Concept, Randomized, Double-Blind, Placebo-Controlled Trial.

ASP0819 is a novel, non-opioid K3.1 channel opener that reverses abnormal nerve firing of primary sensory afferent nerves. Currently available treatments for fibromyalgia provide only modest relief and are accompanied by a host of adverse side effects.

Learn More >

Blockade of IL-33 signalling attenuates osteoarthritis.

Osteoarthritis (OA) is the most common form of arthritis characterised by cartilage degradation, synovitis and pain. Disease modifying treatments for OA are not available. The critical unmet need is to find therapeutic targets to reduce both disease progression and pain. The cytokine IL-33 and its receptor ST2 have been shown to play a role in immune and inflammatory diseases, but their role in osteoarthritis is unknown.

Learn More >

Novel TRPV1 Channel Agonists With Faster and More Potent Analgesic Properties Than Capsaicin.

The transient receptor potential vanilloid 1 (TRPV1) ion channel is a member of the family of Transient Receptor Potential (TRP) channels that acts as a molecular detector of noxious signals in primary sensory neurons. Activated by capsaicin, heat, voltage and protons, it is also well known for its desensitization, which led to the medical use of topically applied TRPV1 agonist capsaicin for its long-lasting analgesic effects. Here we report three novel small molecules, which were identified using a Structure-Based Virtual Screening for TRPV1 from the ZINC database. The three compounds were tested using electrophysiological assays, which confirmed their capsaicin-like agonist activity. von Frey filaments were used to measure the analgesic effects of the compounds applied topically on tactile allodynia induced by intra-plantar carrageenan. All compounds had anti-nociceptive activity, but two of them showed faster and longer lasting analgesic effects than capsaicin. The present results suggest that TRPV1 agonists different from capsaicin could be used to develop topical analgesics with faster onset and more potent effects.

Learn More >

Animal, Herb, and Microbial Toxins for Structural and Pharmacological Study of Acid-Sensing Ion Channels.

Acid-sensing ion channels (ASICs) are of the most sensitive molecular sensors of extracellular pH change in mammals. Six isoforms of these channels are widely represented in membranes of neuronal and non-neuronal cells, where these molecules are involved in different important regulatory functions, such as synaptic plasticity, learning, memory, and nociception, as well as in various pathological states. Structural and functional studies of both wild-type and mutant ASICs are essential for human care and medicine for the efficient treatment of socially significant diseases and ensure a comfortable standard of life. Ligands of ASICs serve as indispensable tools for these studies. Such bioactive compounds can be synthesized artificially. However, to date, the search for such molecules has been most effective amongst natural sources, such as animal venoms or plants and microbial extracts. In this review, we provide a detailed and comprehensive structural and functional description of natural compounds acting on ASICs, as well as the latest information on structural aspects of their interaction with the channels. Many of the examples provided in the review demonstrate the undoubted fundamental and practical successes of using natural toxins. Without toxins, it would not be possible to obtain data on the mechanisms of ASICs' functioning, provide detailed study of their pharmacological properties, or assess the contribution of the channels to development of different pathologies. The selectivity to different isoforms and variety in the channel modulation mode allow for the appraisal of prospective candidates for the development of new drugs.

Learn More >

Rescue of HSP70 in Spinal Neurons Alleviates Opioids-Induced Hyperalgesia via the Suppression of Endoplasmic Reticulum Stress in Rodents.

A major unresolved issue in treating pain is the paradoxical hyperalgesia produced by the gold-standard analgesic morphine and other opioids. Endoplasmic reticulum (ER) stress has been shown to contribute to neuropathic or inflammatory pain, but its roles in opioids-induced hyperalgesia (OIH) are elusive. Here, we provide the first direct evidence that ER stress is a significant driver of OIH. GRP78, the ER stress marker, is markedly upregulated in neurons in the spinal cord after chronic morphine treatment. At the same time, morphine induces the activation of three arms of unfolded protein response (UPR): inositol-requiring enzyme 1α/X-box binding protein 1 (IRE1α/XBP1), protein kinase RNA-like ER kinase/eukaryotic initiation factor 2 subunit alpha (PERK/eIF2α), and activating transcription factor 6 (ATF6). Notably, we found that inhibition on either IRE1α/XBP1 or ATF6, but not on PERK/eIF2α could attenuate the development of OIH. Consequently, ER stress induced by morphine enhances PKA-mediated phosphorylation of NMDA receptor subunit 1(NR1) and leads to OIH. We further showed that heat shock protein 70 (HSP70), a molecular chaperone involved in protein folding in ER, is heavily released from spinal neurons after morphine treatment upon the control of K channel. Glibenclamide, a classic K channel blocker that inhibits the efflux of HSP70 from cytoplasm to extracellular environment, or HSP70 overexpression in neurons, could markedly suppress morphine-induced ER stress and hyperalgesia. Taken together, our findings uncover the induction process and the central role of ER stress in the development of OIH and support a novel strategy for anti-OIH treatment.

Learn More >

Sepiapterin reductase inhibition selectively reduces inflammatory joint pain and increases urinary sepiapterin.

To evaluate the anti-inflammatory and analgesic effect of sepiapterin reductase (SPR) inhibition in a mouse model of inflammatory joint disease and to evaluate sepiapterin as a non-invasive, translational biomarker of SPR inhibition/target engagement in mice and healthy human volunteers.

Learn More >

Evaluation of the Pharmacokinetic Interaction Between the Voltage- and Use-Dependent Nav1.7 Channel Blocker Vixotrigine and Carbamazepine in Healthy Volunteers.

Vixotrigine is a voltage- and use-dependent Nav1.7 channel blocker under investigation for the treatment of peripheral neuropathic pain conditions, including trigeminal neuralgia. Vixotrigine is metabolized primarily via uridine diphosphate-glucuronosyltransferases (UGTs). Carbamazepine, a UGT and cytochrome P450 3A4 inducer, is a first-line treatment for trigeminal neuralgia. We conducted a double-blind, randomized, placebo-controlled, parallel-group, single-center phase 1 study to investigate the impact of coadministering vixotrigine and carbamazepine on their respective pharmacokinetics (PK) in healthy volunteers, the safety and tolerability of combined treatment, and PK recovery of vixotrigine following carbamazepine discontinuation. Randomly assigned treatments were carbamazepine (100 mg twice a day, days 1-3 and 200 mg twice a day, days 4-21) or placebo on days 1 to 21. All volunteers received vixotrigine 150 mg 3 times a day on days 16 to 28. At prespecified times, whole-blood samples were collected for PK assessment. Statistical analyses were performed on the log-transformed PK parameters area under the concentration-time curve within a dosing interval (AUC ) and maximum observed concentration (C ) for vixotrigine, carbamazepine, and metabolites. Vixotrigine AUC and C were reduced by 31.6% and 26.3%, respectively, when coadministered with carbamazepine compared with placebo. Seven days after carbamazepine discontinuation, vixotrigine AUC and C remained 24.5% and 21.4% lower compared with placebo. Carbamazepine AUC and C were <10% lower when coadministered with vixotrigine compared on days 15 and 21. Vixotrigine/carbamazepine coadministration was well tolerated. These results suggest that vixotrigine does not have an effect on carbamazepine PK, and although carbamazepine has an effect on the exposure of vixotrigine, the effect is not considered clinically relevant.

Learn More >

Emerging treatments for headache: advances in 2019.

Learn More >

Search