I am a
Home I AM A Search Login

Pharmacology/Drug Development

Share this

Patients with chronic migraine without history of medication overuse are characterized by a peculiar white matter fiber bundle profile.

We investigated intracerebral fiber bundles using a tract-based spatial statistics (TBSS) analysis of diffusion tensor imaging (DTI) data to verify microstructural integrity in patients with episodic (MO) and chronic migraine (CM).

Learn More >

Genetics and Opioids: Towards More Appropriate Prescription in Cancer Pain.

Opioids are extensively used in patients with cancer pain; despite their efficacy, several patients can experience ineffective analgesia and/or side effects. Pharmacogenetics is a new approach to drug prescription based on the "personalized-medicine" concept, i.e., the ability of tailoring treatments to each individual's genetic/genomic profile. Pharmacogenetics aims to identify specific genetic variants that influence pharmacokinetics and pharmacodynamics of drugs, better determining their effectiveness/safety profile. Opioid response is a complex scenario, but some gene variants have shown a correlation with pain sensitivity, as well as with opioid metabolism and clinical efficacy/adverse events. Although questions remain unanswered, some of these gene variants may already be used to identify specific patients' phenotypes that are more prone to experience better clinical response (i.e., better analgesia and/or less adverse events). Once adopted, this approach to opioid prescription may improve a patient's outcome. This review summarizes the available data on genetic variants and opioid response: we will focus on basic pharmacogenetic and its impact in the clinical scenario discussing how they may lead to more appropriate opioid prescription in cancer patients.

Learn More >

Transient receptor potential ankyrin 1 (TRPA1) antagonists: a patent review (2015-2019).

TRPA1 is a non-selective cation channel predominantly expressed in sensory neurons, and functions as an irritant sensor for a plethora of noxious external stimuli and endogenous ligands associated with cell damage. Due to its involvement in pain, itch, and respiratory syndromes, TRPA1 has been pursued as a promising drug target.

Learn More >

The Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of ASP3652 in First-in-Human and Ascending Multiple Oral Dose Studies in Healthy Subjects.

Inhibitors of fatty acid amide hydrolase (FAAH) increase the levels of endocannabinoids and have shown analgesic and anti-inflammatory activity in animal models. ASP3652 is a peripherally acting FAAH inhibitor in development for the treatment of chronic bladder and pelvic pain disorders. Here we describe the safety, pharmacokinetics, and pharmacodynamics of single and multiple oral doses of ASP3652 administered in healthy non-elderly and elderly male and female volunteers.

Learn More >

A Phase I, Randomized, Single‑Blind, Placebo‑Controlled, Single Ascending Dose Study of the Safety, Tolerability, and Pharmacokinetics of Subcutaneous and Oral TRV250, a G Protein-Selective Delta Receptor Agonist, in Healthy Subjects.

The delta opioid receptor (DOR) has been identified as a therapeutic target for migraine, with DOR agonists exhibiting low abuse potential compared with conventional µ-opioid agonists. TRV250 is a novel small molecule agonist of the DOR that is preferentially selective for G-protein signaling, with relatively little activation of the β-arrestin2 post-receptor signaling pathway. This selectivity provides reduced susceptibility to proconvulsant activity seen with non-selective DOR agonists. TRV250 significantly reduced nitroglycerin-evoked hyperalgesia in rodents, indicating a potential utility in acute migraine without the risk of seizure activity or abuse potential.

Learn More >

Endomorphin analog exhibited superiority in alleviating neuropathic hyperalgesia via weak activation of NMDA receptors.

Morphine is a key drug for the treatment of pain but its side effects limit its clinical application. MEL-0614, an endomorphin-1 analog, has fewer side effects than morphine in addition to its powerful analgesic effect. In this study, we measured the effect of morphine and MEL-0614 on hyperalgesia (7 days) and neuropathic allodynia (14 days) after thermal, mechanical, and cold stimulation. We found that after 4 and 8 consecutive days of intrathecal administration (1, 3, and 10 nmol), morphine induced severe hyperalgesia and neuropathic allodynia, respectively. MEL-0614 did not induce hyperalgesia at low doses (1 and 3 nmol) and had a mitigating effect on morphine-induced neuropathic exacerbations in spared nerve injury mice. Hyperalgesia was blocked by Dynorphin A (1-17) antibody but not by an opioid receptor antagonist. To explore the reasons for the different results of morphine and MEL-0614, we used quantitative PCR and immunofluorescence to explore the effects of both on NMDA receptor subtype 2B (NR2B), microglia marker iba-1, and inflammatory mediators. After 8 days of consecutive administration, morphine (10 nmol) promoted an increase in the number of NR2B, iba-1, and inflammatory mediators in the spinal cord of mice. MEL-0614 (10 nmol) had no significant effect on these factors, and after co-administration with morphine, the expression of NR2B, iba-1, and inflammatory mediators was lower than that with morphine injection alone. Our research showed the advantage of MEL-0614 in terms of hyperalgesia and neuropathic allodynia, which may provide clinical relief of hyperalgesia and neuropathic allodynia caused by morphine.

Learn More >

All-cause mortality in patients with long-term opioid therapy compared with non-opioid analgesics for chronic non-cancer pain: a database study.

Hitherto only studies with selected populations have found an increased all-cause mortality of some selected opioids compared to selected non-opioids for chronic non-cancer pain (CNCP). We have examined the all-cause mortality for CNCP associated with all established opioids compared to non-opioid analgesic therapy (anticonvulsants, antidepressants, dipyrone, non-steroidal agents).

Learn More >

The discovery of azetidine-piperazine di-amides as potent, selective and reversible monoacylglycerol lipase (MAGL) inhibitors.

Monoacylglycerol lipase (MAGL) is the enzyme that is primarily responsible for hydrolyzing the endocannabinoid 2-arachidononylglycerol (2-AG) to arachidonic acid (AA). It has emerged in recent years as a potential drug target for a number of diseases. Herein, we report the discovery of compound 6g from a series of azetidine-piperazine di-amide compounds as a potent, selective, and reversible inhibitor of MAGL. Oral administration of compound 6g increased 2-AG levels in rat brain and produced full efficacy in the rat complete Freund's adjuvant (CFA) model of inflammatory pain.

Learn More >

Efficacy and Contextual (Placebo) Effects of CGRP Antibodies for Migraine: Systematic Review and Meta-analysis.

CGRP Antibodies are high-cost newly licensed migraine preventatives.

Learn More >

Mirtazapine, an α2 antagonist-type antidepressant reverses pain and lack of morphine analgesia in fibromyalgia-like mouse models.

Treatment for fibromyalgia is an unmet medical need; however, its pathogenesis is still poorly understood. In a series of studies, we have demonstrated that some pharmacological treatments reverse generalized chronic pain, but do not affect the lack of morphine analgesia in the intermittent cold stress (ICS)-induced fibromyalgia-like pain model in mice. Here we report that repeated intraperitoneal treatments with mirtazapine (Mir), which is presumed to disinhibit 5-HT release and activate 5-HT1 receptor through mechanisms of blocking presynaptic adrenergic α2, postsynaptic 5-HT2 and 5-HT3 receptors, completely reversed the chronic pain for more than 4-5 days after the cessation of treatments. The repeated Mir-treatments also recovered the morphine analgesia after the return of nociceptive threshold to the normal level. The microinjection of siRNA adrenergic α2a receptor (ADRA2A) into the habenula, which showed a selective upregulation of α2 receptor gene expression after ICS, reversed the hyperalgesia, but did not recover the morphine analgesia. However, both reversal of hyperalgesia and recovery of morphine analgesia were observed when siRNA ADRA2A was administered intracebroventricularly. As the habenular is reported to be involved in the emotion/reward-related pain and hypoalgesia, these results suggest that Mir could attenuate pain and/or augment hypoalgesia by blocking the habenular α2 receptor after ICS. The recovery of morphine analgesia in the ICS model, on the other hand, seems to be mediated through a blockade of α2 receptor in unidentified brain regions. SIGNIFICANCE STATEMENT: This study reports possible mechanisms underlying the complete reversal of hyperalgesia and recovery of morphine analgesia by mirtazapine, a unique antidepressant with adrenergic α2 and serotonergic receptor antagonist properties, in a type of intermittently repeated stress (ICS)-induced fibromyalgia-like pain model. Habenula, a brain region which is related to the control of emotional pain, was found to play key roles in the anti-hyperalgesia, while other brain regions appeared to be involved in the recovery of morphine analgesia in the ICS-model.

Learn More >

Search