I am a
Home I AM A Search Login

Pharmacology/Drug Development

Share this

Asprosin, a novel therapeutic candidate for painful neuropathy: an experimental study in mice.

Recent studies indicate presence of a strong link between adipokines and neuropathic pain. However, the effects of asprosin, a novel adipokine, on neuropathic pain have not been studied in animal models.Mouse models were employed to investigate the antinociceptive effectiveness of asprosin in the treatment of three types of neuropathic pain, with metabolic (streptozocin/STZ), toxic (oxaliplatin/OXA), and traumatic (sciatic nerve ligation/CCI [chronic constriction nerve injury]) etiologies, respectively. Changes in nociceptive behaviors were assessed relative to controls using thermal (the hot plate and cold plate tests, at 50 °C and 4 °C respectively) and mechanical pain (von Frey test) tests after intraperitoneal (i.p.) administration of asprosin (10 µg/kg) and gabapentin (50 mg/kg) in several times intervals. Besides, possible effect of asprosin on the motor coordination of mice was assessed with a rotarod test. Serum level of asprosin was quantified by ELISA.In neuropathic pain models (STZ, OXA, and CCI), asprosin administration significantly reduced both mechanical and thermal hypersensitivity, indicating that it exhibits a clear-cut antihypersensitivity effect in the analyzed neuropathic pain models. The most effective time of asprosin on pain threshold was observed 60 min after its injection. Also, asprosin displayed no notable effect on the motor activity. Asprosin levels were significantly lower in neuropathic pain compared to healthy group (p < 0.05).The results yielded by the present study suggest that asprosin exhibits an analgesic effect in the neuropathic pain models and may have clinical utility in alleviating chronic pain associated with disease and injury originating from peripheral structures.

Learn More >

Prolonged exposure for pain and comorbid PTSD: a single-case experimental study of a treatment supplement to multiprofessional pain rehabilitation.

It is unclear how to address PTSD in the context of chronic pain management. Here we examine the potential benefits of an addition of prolonged exposure (PE) therapy for PTSD for adults attending multidisciplinary CBT for chronic pain.

Learn More >

Association Between Prescription Opioid Therapy for Noncancer Pain and Hepatitis C Virus Seroconversion.

Initiation of injection drug use may be more frequent among people dispensed prescription opioid therapy for noncancer pain, potentially increasing the risk of hepatitis C virus (HCV) acquisition.

Learn More >

A systematic review and meta-analysis of efficacy of ultrasound-guided single-shot quadratus lumborum block for postoperative analgesia in adults following total hip arthroplasty.

To evaluate the efficacy of ultrasound-guided single-shot quadratus lumborum block (QLB) for postoperative analgesia in adults following total hip arthroplasty (THA).

Learn More >

Opioid Use Disorder Treatment Initiation and Continuation: a Qualitative Study of Patients Who Received Addiction Consultation and Hospital-Based Providers.

Hospitalizations related to opioid use disorder (OUD) are rising. Addiction consultation services (ACS) increasingly provide OUD treatment to hospitalized patients, but barriers to initiating and continuing medications for OUD remain. We examined facilitators and barriers to hospital-based OUD treatment initiation and continuation from the perspective of patients and healthcare workers in the context of an ACS.

Learn More >

Lidocaine relieves spinal cord ischemia-reperfusion injury via long non-coding RNA MIAT-mediated Notch1 downregulation.

Microglial activation and inflammatory response play a critical role in spinal cord ischemia-reperfusion injury (SCIRI). This study aimed to investigate whether lidocaine relieves SCIRI via modulating MIAT-mediated Notch1 downregulation. Mouse SCIRI was induced by the obstruction of the aortic arch. Lidocaine was injected after reperfusion. Microglial activation and inflammatory response were assessed by Iba1, interleukin 1 beta (IL-1β), and tumor necrosis factor alpha (TNF-α) levels. The interaction between MIAT and Notch1 was assessed by RNA pull-down and RNA immunoprecipitation assays. Lidocaine treatment relieved SCIRI by reducing Iba1 and serum TNF-α and IL-1β levels. After lidocaine treatment, MIAT expression was elevated in lipopolysaccharide- (LPS-) induced BV2 cells. The interference of MIAT and the overexpression of MIAT and Notch1 restored TNF-α and IL-1β levels in supernatants. Notch1 protein was existent in MIAT-pull-down compounds, and the expression of MIAT was markedly elevated in Notch1-immunoprecipitants. The overexpression of MIAT markedly promoted the degradation of Notch1 and increased the level of ubiquitin-bound Notch1 complex. The therapeutic effect of lidocaine on SCIRI mice could be reversed by adeno-associated virus-mediated MIAT knockdown. In conclusion, lidocaine treatment relieved SCIRI via inhibiting microglial activation and reducing the inflammatory response. The molecular mechanism was partly through MIAT-mediated Notch1 downregulation.

Learn More >

TNF-α-Mediated RIPK1 Pathway Participates in the Development of Trigeminal Neuropathic Pain in Rats.

Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) participates in the regulation of cellular stress and inflammatory responses, but its function in neuropathic pain remains poorly understood. This study evaluated the role of RIPK1 in neuropathic pain following inferior alveolar nerve injury. We developed a model using malpositioned dental implants in male Sprague Dawley rats. This model resulted in significant mechanical allodynia and upregulated RIPK1 expression in the trigeminal subnucleus caudalis (TSC). The intracisternal administration of Necrosatin-1 (Nec-1), an RIPK1 inhibitor, blocked the mechanical allodynia produced by inferior alveolar nerve injury The intracisternal administration of recombinant rat tumor necrosis factor-α (rrTNF-α) protein in naive rats produced mechanical allodynia and upregulated RIPK1 expression in the TSC. Moreover, an intracisternal pretreatment with Nec-1 inhibited the mechanical allodynia produced by rrTNF-α protein. Nerve injury caused elevated TNF-α concentration in the TSC and a TNF-α block had anti-allodynic effects, thereby attenuating RIPK1 expression in the TSC. Finally, double immunofluorescence analyses revealed the colocalization of TNF receptor and RIPK1 with astrocytes. Hence, we have identified that astroglial RIPK1, activated by the TNF-α pathway, is a central driver of neuropathic pain and that the TNF-α-mediated RIPK1 pathway is a potential therapeutic target for reducing neuropathic pain following nerve injury.

Learn More >

IL-17 crosses the blood-brain barrier to trigger neuroinflammation: a novel mechanism in nitroglycerin-induced chronic migraine.

Chronic migraine places a disabling burden on patients, which is extensively modeled by the nitroglycerin (NTG)-treated animal model. Although the NF-κB pathway is involved in an increase in CGRP levels and activation of the trigeminal system in the NTG model, the relationship between NTG and neuroinflammation remains unclear. This study aimed to optimize a chronic NTG rat model with hyperalgesia and the ethological capacity for estimating migraine therapies and to further explore the underlying mechanism of NTG-induced migraine.

Learn More >

The glial cell’s role in antinociceptive differential effects of oxytocin upon female and male rats.

Sex plays a crucial role in pain processing and response to analgesic drugs. Indeed, spinal glia seems to be significant in the sexual dimorphism observed in the above effects. Recently, studies have associated oxytocin with antinociceptive effects, but these have been mainly performed in male animals; consequently, the influence of sex has been poorly explored.

Learn More >

A Systematic Review and Meta-Analysis of Efficacy of Botulinum Toxin A for Neuropathic Pain.

We performed a systematic review and meta-analysis of randomised controlled trials (RCTs) conducted from January 2005 to June 2021 to update the evidence of Botulinum toxin A (BoNT-A) in neuropathic pain (NP) in addition to quality of life (QOL), mental health, and sleep outcomes. We conducted a Cochrane Grading of Recommendations Assessment, Development, and Evaluation (GRADE) criteria analysis of RCTs from the following data sources: EMBASE, CINAHL, WHO International Clinical Trial Registry Platform, ClinicalTrials.gov, Cochrane database, Cochrane Clinical Trial Register, Australia New Zealand Clinical Trials Registry, and EU Clinical Trials Register. Meta-analysis of 17 studies showed a mean final VAS reduction in pain in the intervention group of 2.59 units (95% confidence interval: 1.79, 3.38) greater than the mean for the placebo group. The overall mean difference for sleep, Hospital Anxiety and Depression Scale (HADS) anxiety, HADS depression, and QOL mental and physical sub-scales were, respectively, 1.10 (95% CI: -1.71, 3.90), 1.41 (95% CI: -0.61, 3.43), -0.16 (95% CI: -1.95, 1.63), 0.85 (95% CI: -1.85, 3.56), and -0.71 (95% CI: -3.39, 1.97), indicating no significance. BoNT-A is effective for NP; however, small-scale RCTs to date have been limited in evidence. The reasons for this are discussed, and methods for future RCTs are developed to establish BoNT-A as the first-line agent.

Learn More >

Search