I am a
Home I AM A Search Login

Pharmacology/Drug Development

Share this

HDAC6 regulates NF-κB signalling to control chondrocyte IL-1-induced MMP and inflammatory gene expression.

Elevated pro-inflammatory signalling coupled with catabolic metalloproteinase expression is a common feature of arthritis, leading to cartilage damage, deterioration of the joint architecture and the associated pain and immobility. Countering these processes, histone deacetylase inhibitors (HDACi) have been shown to suppress matrix metalloproteinase (MMP) expression, block cytokine-induced signalling and reduce the cartilage degradation in animal models of the arthritis. In order to establish which specific HDACs account for these chondro-protective effects an HDAC1-11 RNAi screen was performed. HDAC6 was required for both the interleukin (IL)-1 induction of MMP expression and pro-inflammatory interleukin expression in chondrocytes, implicating an effect on NF-κB signalling. Depletion of HDAC6 post-transcriptionally up-regulated inhibitor of κB (IκB), prevented the nuclear translocation of NF-κB subunits and down-regulated NF-κB reporter activation. The pharmacological inhibition of HDAC6 reduced MMP expression in chondrocytes and cartilage collagen release. This work highlights the important role of HDAC6 in pro-inflammatory signalling and metalloproteinase gene expression, and identifies a part for HDAC6 in the NF-κB signalling pathway. By confirming the protection of cartilage this work supports the inhibition of HDAC6 as a possible therapeutic strategy in arthritis.

Learn More >

Brain-based measures of nociception during general anesthesia with remifentanil: A randomized controlled trial.

Catheter radiofrequency (RF) ablation for cardiac arrhythmias is a painful procedure. Prior work using functional near-infrared spectroscopy (fNIRS) in patients under general anesthesia has indicated that ablation results in activity in pain-related cortical regions, presumably due to inadequate blockade of afferent nociceptors originating within the cardiac system. Having an objective brain-based measure for nociception and analgesia may in the future allow for enhanced analgesic control during surgical procedures. Hence, the primary aim of this study is to demonstrate that the administration of remifentanil, an opioid widely used during surgery, can attenuate the fNIRS cortical responses to cardiac ablation.

Learn More >

Dexmedetomidine alleviates hyperalgesia in arthritis rats through inhibition of the p38MAPK signaling pathway.

Dexmedetomidine (DEX) has showed significant analgesic effects in neuropathic pain, but the underlying mechanism has remained elusive. Our present study aimed to explore the effect of DEX on hyperalgesia with the involvement of p38MAPK signaling pathway a rat model of monoarthritis (MA).

Learn More >

Diclofenac-hyaluronate conjugate (diclofenac etalhyaluronate) intra-articular injection for hip, ankle, shoulder, and elbow osteoarthritis: a randomized controlled trial.

To evaluate the efficacy and safety of intra-articular injection of diclofenac etalhyaluronate (DF-HA) in patients with osteoarthritis (OA) of the hip, ankle, shoulder, or elbow.

Learn More >

P2X Receptor Antagonists and their Potential as Therapeutics: a patent review (2010 – 2021).

: Purinergic receptors play a critical role in neurotransmission, and modulation of complex physiological functions. As such, they have been implicated in numerous disease states including chronic pain, inflammation, autoimmune disease, and cancer. The past decade has seen substantial progress in the design of novel chemical compounds that act on the P2X class of receptors and warrants an updated review of this field.

Learn More >

An ACVR1 activating mutation causes neuropathic pain and sensory neuron hyperexcitability in humans.

Altered bone morphogenetic protein (BMP) signaling is associated with many musculoskeletal diseases. However, it remains unknown whether BMP dysfunction has direct contribution to debilitating pain reported in many of these disorders. Here we identified a novel neuropathic pain phenotype in patients with fibrodysplasia ossificans progressiva (FOP), a rare autosomal-dominant musculoskeletal disorder characterized by progressive heterotopic ossification. Ninety-seven percent of these patients carry an R206H gain-of-function point mutation in the bone morphogenetic protein (BMP) type I receptor ACVR1 (ACVR1R206H), which causes neofunction to Activin A and constitutively activates signaling through phosphorylated SMAD1/5/8. Although FOP patients can harbor pathological lesions in the peripheral and central nervous system, their etiology is unclear. Quantitative Sensory Testing (QST) of patients with FOP revealed significant heat and mechanical pain hypersensitivity. Although there was no major impact of ACVR1R206H on differentiation and maturation of nociceptive sensory neurons (iSNs) derived from FOP induced pluripotent stem cells (iPSCs), both intracellular and extracellular electrophysiology analysis of the ACVR1R206H iSNs displayed ACVR1-dependent hyperexcitability, a hallmark of neuropathic pain. Consistent with this phenotype, we recorded enhanced responses of ACVR1R206H iSNs to TRPV1 and TRPA1 agonists. Thus, activated ACVR1 signaling can modulate pain processing in humans and may represent a potential target for pain management in FOP and related BMP pathway diseases.

Learn More >

The role of PTEN in primary sensory neurons in processing itch and thermal information in mice.

PTEN is known as a tumor suppressor and plays essential roles in brain development. Here, we report that PTEN in primary sensory neurons is involved in processing itch and thermal information in adult mice. Deletion of PTEN in the dorsal root ganglia (DRG) is achieved in adult Drg11-Cre: PTEN (PTEN CKO) mice with oral administration of tamoxifen, and CKO mice develop pathological itch and elevated itch responses on exposure to various pruritogens. PTEN deletion leads to ectopic expression of TRPV1 and MrgprA3 in IB4 non-peptidergic DRG neurons, and the TRPV1 is responsive to capsaicin. Importantly, the elevated itch responses are no longer present in Drg11-Cre: PTEN: TRPV1 (PTEN: TRPV1 dCKO) mice. In addition, thermal stimulation is enhanced in PTEN CKO mice but blunted in dCKO mice. PTEN-involved regulation of itch-related gene expression in DRG neurons provides insights for understanding molecular mechanism of itch and thermal sensation at the spinal level.

Learn More >

Type I interferon antagonism of the JMJD3-IRF4 pathway modulates macrophage activation and polarization.

Metabolic adaptations can directly influence the scope and scale of macrophage activation and polarization. Here we explore the impact of type I interferon (IFNβ) on macrophage metabolism and its broader impact on cytokine signaling pathways. We find that IFNβ simultaneously increased the expression of immune-responsive gene 1 and itaconate production while inhibiting isocitrate dehydrogenase activity and restricting α-ketoglutarate accumulation. IFNβ also increased the flux of glutamine-derived carbon into the tricarboxylic acid cycle to boost succinate levels. Combined, we identify that IFNβ controls the cellular α-ketoglutarate/succinate ratio. We show that by lowering the α-ketoglutarate/succinate ratio, IFNβ potently blocks the JMJD3-IRF4-dependent pathway in GM-CSF and IL-4 activated macrophages. The suppressive effects of IFNβ on JMJD3-IRF4-dependent responses, including M2 polarization and GM-CSF-induced inflammatory pain, were reversed by supplementation with α-ketoglutarate. These results reveal that IFNβ modulates macrophage activation and polarization through control of the cellular α-ketoglutarate/succinate ratio.

Learn More >

Verbascoside administered intrathecally attenuates hyperalgesia via activating mu-opioid receptors in a rat chronic constriction injury model.

Verbascoside, a representative phenylethanoid glycoside, is widely distributed in plants and has various activities beneficial for human health. Although systemically administered verbascoside has an antinociceptive effect, little is known about the site and mechanism of its activity. The aim of the present study was to determine whether verbascoside attenuates neuropathic pain in the spinal cord and which pain regulatory systems are involved.

Learn More >

Measuring dose-related efficacy of eptinezumab for migraine prevention: post hoc analysis of PROMISE-1 and PROMISE-2.

Eptinezumab 100 mg and 300 mg met the primary efficacy endpoint in both PROMISE clinical trials, significantly reducing frequency of monthly migraine days over Weeks 1‒12. The objective of this analysis was to assess the clinical response to eptinezumab 100 mg and 300 mg within the pivotal phase 3 PROMISE-1 and PROMISE-2 studies to potentially identify subsets of patients with meaningful differences between doses.

Learn More >

Search