I am a
Home I AM A Search Login

Pharmacology/Drug Development

Share this

The Association Between the Occurrence of Common Treatment-Emergent Adverse Events and Efficacy Outcomes After Lasmiditan Treatment of a Single Migraine Attack: Secondary Analyses from Four Pooled Randomized Clinical Trials.

In controlled clinical trials, compared with placebo, a significantly greater proportion of participants using lasmiditan to treat a migraine attack achieved 2-h pain freedom (PF) and experienced ≥ 1 treatment-emergent adverse event (TEAE).

Learn More >

Anti-Inflammatory Properties of KLS-13019: a Novel GPR55 Antagonist for Dorsal Root Ganglion and Hippocampal Cultures.

KLS-13019, a novel devised cannabinoid-like compound, was explored for anti-inflammatory actions in dorsal root ganglion cultures relevant to chemotherapy-induced peripheral neuropathy (CIPN). Time course studies with 3 µM paclitaxel indicated > 1.9-fold increases in immunoreactive (IR) area for cell body GPR55 after 30 min as determined by high content imaging. To test for reversibility of paclitaxel-induced increases in GPR55, cultures were treated for 8 h with paclitaxel alone and then a dose response to KLS-13019 added for another 16 h. This "reversal" paradigm indicated established increases in cell body GPR55 IR areas were decreased back to control levels. Because GPR55 had previously reported inflammatory actions, IL-1β and NLRP3 (inflammasome-3 marker) were also measured in the "reversal" paradigm. Significant increases in all inflammatory markers were produced after 8 h of paclitaxel treatment alone that were reversed to control levels with KLS-13019 treatment. Accompanying studies using alamar blue indicated that decreased cellular viability produced by paclitaxel treatment was reverted back to control levels by KLS-13019. Similar studies conducted with lysophosphatidylinositol (GPR55 agonist) in DRG or hippocampal cultures demonstrated significant increases in neuritic GPR55, NLRP3 and IL-1β areas that were reversed to control levels with KLS-13019 treatment. Studies with a human GPR55-β-arrestin assay in Discover X cells indicated that KLS-13019 was an antagonist without agonist activity. These studies indicated that KLS-13019 has anti-inflammatory properties mediated through GPR55 antagonist actions. Together with previous studies, KLS-13019 is a potent neuroprotective, anti-inflammatory cannabinoid with therapeutic potential for high efficacy treatment of neuropathic pain.

Learn More >

Intra-articular Treatment of Digital Osteoarthritis by Radiosynoviorthesis-Clinical Outcome in Long-term Follow-up.

This retrospective study analyzed the long-term effects of radiosynoviorthesis (RSO) with special emphasis to local joint pain in patients from 4 different RSO centers in Germany and Austria.

Learn More >

Sensitisation of colonic nociceptors by TNFα is dependent on TNFR1 expression and p38 MAPK activity.

The pro-inflammatory cytokine TNFα is elevated in GI disease and sensitises colonic afferents via modulation of TRPA1 and Na 1.8 activity. We further develop this understanding by demonstrating a role for p38 MAPK and TRPV1 in TNFα mediated colonic afferent sensitisation. Specifically, we show that: TNFα sensitises sensory neurons and colonic afferents to the TRPV1 agonist capsaicin. TNFα-mediated sensitisation of sensory neurons and colonic nociceptors is dependent on TNFR1 expression. TNFα sensitisation of sensory neurons and colonic afferents to capsaicin and noxious ramp distension is abolished by inhibition of p38 MAPK. Collectively this data supports the utility of targeting TNFα, TNFR1 and their downstream signalling via p38 MAPK for the treatment of visceral pain in GI disease.

Learn More >

A nerve injury-specific long noncoding RNA promotes neuropathic pain by increasing Ccl2 expression.

Maladaptive changes of nerve injury-associated genes in dorsal root ganglia (DRGs) are critical for neuropathic pain genesis. Emerging evidence supports the role of long noncoding RNAs (lncRNAs) in regulating gene transcription. Here we identified a conserved lncRNA, named nerve injury-specific lncRNA (NIS-lncRNA) for its upregulation in injured DRGs exclusively in response to nerve injury. This upregulation was triggered by nerve injury-induced increase in DRG ELF1, a transcription factor that bound to the NIS-lncRNA promoter. Blocking this upregulation attenuated nerve injury-induced CCL2 increase in injured DRGs and nociceptive hypersensitivity during the development and maintenance periods of neuropathic pain. Mimicking NIS-lncRNA upregulation elevated CCL2 expression, increased CCL2-mediated excitability in DRG neurons, and produced neuropathic pain symptoms. Mechanistically, NIS-lncRNA recruited more binding of the RNA-interacting protein FUS to the Ccl2 promoter and augmented Ccl2 transcription in injured DRGs. Thus, NIS-lncRNA participates in neuropathic pain likely by promoting FUS-triggered DRG Ccl2 expression and may be a potential target in neuropathic pain management.

Learn More >

Effectiveness of anti-CGRP monoclonal antibodies on central symptoms of migraine.

Clinical trials and observational studies with anti-calcitonin gene-related peptide antibodies poorly investigated their impact on migraine prodromal and accompanying symptoms. This information might help deciphering the biologics' pharmacodynamic and provide hints on migraine pathogenesis. Herein, we report the effects of erenumab, fremanezumab and galcanezumab on attack prodromal and accompanying symptoms and on neurological and psychiatric traits. .

Learn More >

Sex specific effects of buprenorphine on behavior, astrocytic opioid receptor expression and neuroinflammation after pediatric traumatic brain injury in mice.

Children who suffered traumatic brain injury (TBI) often experience acute and chronic pain, which is linked to a poor quality of life. Buprenorphine (BPN) is commonly used to treat moderate to severe persistent pain in children, however, the efficacy and safety profile of BPN in the pediatric population is still inconclusive. This study investigated the sex-specific effects of BPN on body weight, motor coordination and strength, expression of opioid receptors in the white matter astrocytes, and neuroinflammation in a mouse impact acceleration model of pediatric TBI. Male and female littermates were randomized on postnatal day 20-21(P20-21) into Sham, TBI + saline and TBI + BPN groups. Mice in the TBI + saline and TBI + BPN groups underwent TBI, while the Sham group underwent anesthesia without injury. BPN (0.075 mg/kg) was administered to the TBI + BPN mice at 30 min after injury, and then every 6-12 h for 2 days. Mice in the TBI + saline group received the same amount of saline injections. The impact of BPN on body weight, motor function, opioid receptor expression, and neuroinflammation was evaluated at 1-day (d), 3-d and 7-d post-injury. We found that 1) TBI induced significant weight loss in both males and females. BPN treatment improved weight loss at 3-d post-injury in females. 2) TBI significantly impaired motor coordination and strength. BPN improved motor coordination and strength in both males and females at 1-d and 3-d post-injury. 3) TBI significantly decreased exploration activity at 1-d post-injury in males, and at 7-d post-injury in females, while BPN improved the exploration activity in females. 4) TBI significantly increased mRNA expression of mu-opioid receptors (MOR) at 7-d post-injury in males, but decreased mRNA expression of MOR at 1-d post-injury in females. BPN normalized MOR mRNA expression at 1-d post-injury in females. 5) MOR expression in astrocytes at corpus callosum significantly increased at 7-d post-injury in male TBI group, but significantly decreased at 1-d post-injury in female TBI group. BPN normalized MOR expression in both males and females. 6) TBI significantly increased the mRNA expression of TNF-α, IL-1β, IL-6 and iNOS. BPN decreased mRNA expression of iNOS, and increased mRNA expression of TGF-β1. In conclusion, this study elucidates the sex specific effects of BPN during the acute phase after pediatric TBI, which provides the rationale to assess potential effects of BPN on chronic pathological progressions after pediatric TBI in both males and females.

Learn More >

SNHG5 knockdown alleviates neuropathic pain induced by chronic constriction injury via sponging miR‑142‑5p and regulating the expression of CAMK2A.

Neuropathic pain (NP) is one of the most intractable diseases. The lack of effective therapeutic measures remains a major problem due to the poor understanding of the cause of NP. The aim of the present study was to investigate the effect of the long non‑coding RNA small nucleolar RNA host gene 5 (SNHG5) in NP and the underlying molecular mechanism in order to identify possible therapeutic targets. A chronic constriction injury (CCI) mouse model was used to investigate whether SNHG5 prevents NP and the inflammatory response. Luciferase and RNA pull‑down assays were used to detect the binding between SNHG5 and miR‑142‑5p as well as between miR‑142‑5p and CAMK2A. Western blot and qPCR were used to detect the RNA and protein expression. The results indicated that SNHG5 significantly inhibited CCI‑induced NP. In addition, SNHG5 inhibited the inflammatory response through decreasing the release and the mRNA expression of interleukin (IL)‑1β, IL‑6, IL‑10 and tumor necrosis factor‑α. Mechanistically, SNHG5 acted via sponging microRNA‑142‑5p, thereby upregulating the expression of calcium/calmodulin‑dependent protein kinase II α (CAMK2A). Further investigation indicated that CAMK2A knockdown also inhibited CCI‑induced NP and inflammation. In summary, the present study demonstrated that SNHG5 silencing could alleviate the neuropathic pain induced by chronic constriction injury via sponging miR‑142‑5p and regulating the expression of CAMK2A.

Learn More >

Cinnamoyloxy-mammeisin, a coumarin from propolis of stingless bees, attenuates Th17 cell differentiation and autoimmune inflammation via STAT3 inhibition.

T helper 17 (Th17) lymphocytes play a critical role in the pathogenesis of autoimmune diseases, mainly by producing the pro-inflammatory cytokine interleukin-17 (IL-17). Therefore, Th17 lymphocytes have been considered a strategic target for drug discovery and development. In this study, we investigated the activity and possible mechanisms of action of a 4-phenyl coumarin isolated from propolis, named cinnamoyloxy-mammeisin (CNM), in Th17 cell differentiation and the development of experimental Th17-dependent autoimmune encephalomyelitis (EAE). Our data showed that in vitro Th17 cell differentiation was attenuated by CNM treatment in a concentration-dependent manner (1, 3, and 10 μM). This was associated with a reduction in the release of IL-17 (35% inhibition) and interleukin-22 (IL-22, 51% inhibition). Th17-differentiated cells exposed to CNM also downregulated the expression of Th17 hallmarked cell genes, such as RAR-related orphan receptor c (Rorc, 51% inhibition), and interleukin-23 receptor (Il23r, 64% inhibition), indicating possible upstream molecular mechanisms. Mechanistically, CNM significantly reduced the phosphorylation of signal transducer and activator of transcription 3 (p-STAT3) during in vitro Th17 cell differentiation. In vivo treatment with CNM (100 μg/kg) reduced the clinical signs of EAE, which was associated with a reduction in Central Nervous System demyelination, neuroinflammation, and Th17 response in the spinal cord and inguinal lymph nodes. Consistent with this, CNM also effectively attenuated human Th17 differentiation in vitro. Collectively, our results highlight the potential of CNM as a new molecule that can modulate Th17 cells via inhibition of STAT3 signaling and, as a result, reduce autoimmune inflammation.

Learn More >

Investigating Opioid-Free Analgesia-Practice Makes Perfect.

Learn More >

Search