I am a
Home I AM A Search Login

Human Studies

Share this

Multicentre, double-blind, randomised, sham-controlled trial of 10 khz high-frequency spinal cord stimulation for chronic neuropathic low back pain (MODULATE-LBP): a trial protocol.

Chronic neuropathic low back pain (CNLBP) is a debilitating condition in which established medical treatments seldom alleviate symptoms. Evidence demonstrates that high-frequency 10 kHz spinal cord stimulation (SCS) reduces pain and improves health-related quality of life in patients with failed back surgery syndrome (FBSS), but evidence of this effect is limited in individuals with CNLBP who have not had surgery. The aim of this multicentre randomised trial is to assess the clinical and cost-effectiveness of 10 kHz SCS for this population.

Learn More >

Characterization of Ubrogepant: A Potent and Selective Antagonist of the Human Calcitonin Gene‒Related Peptide Receptor.

A growing body of evidence has implicated the calcitonin gene-related peptide (CGRP) receptors in migraine pathophysiology. With the recent approval of monoclonal antibodies targeting CGRP or the CGRP receptor, the inhibition of CGRP-mediated signaling has emerged as a promising approach for preventive treatments of migraine in adults. However, there are no small-molecule anti-CGRP treatments available for treating migraine. The current studies aimed to characterize the pharmacologic properties of ubrogepant, an orally bioavailable, CGRP receptor antagonist for the acute treatment of migraine. In a series of ligand binding assays, ubrogepant exhibited a high binding affinity for native (=0.067 nM) and cloned human (=0.070 nM) and rhesus CGRP receptors (=0.079 nM), with relatively lower affinities for CGRP receptors from rat, mouse, rabbit and dog. In functional assays, ubrogepant potently blocked human α-CGRP stimulated cAMP response (IC of 0.08 nM) and exhibited highly selective antagonist activity for the CGRP receptor compared with other members of the human calcitonin receptor family. Furthermore, the in vivo CGRP receptor antagonist activity of ubrogepant was evaluated in a pharmacodynamic model of capsaicin-induced dermal vasodilation (CIDV) in rhesus monkeys and humans. Results demonstrated that ubrogepant produced concentration-dependent inhibition of CIDV with a mean EC of 3.2 and 2.6 nM in rhesus monkeys and humans, respectively. Brain penetration studies with ubrogepant in monkeys showed a CSF/plasma ratio of 0.03 and low CGRP receptor occupancy. In summary, ubrogepant is a competitive antagonist with high affinity, potency, and selectivity for the human CGRP receptor. SIGNIFICANCE STATEMENT: Ubrogepant is a potent, selective, orally delivered, small-molecule competitive antagonist of the human calcitonin generelated peptide receptor. In vivo studies using a pharmacodynamic model of capsaicin-induced dermal vasodilation (CIDV) in rhesus monkeys and humans demonstrated that ubrogepant produced concentration-dependent inhibition of CIDV, indicating a predictable pharmacokinetic-pharmacodynamic relationship.

Learn More >

Trauma-related guilt and pain among veterans with PTSD.

Despite the well-known co-occurrence of posttraumatic stress disorder (PTSD) and chronic pain, large gaps remain in understanding how these two conditions influence each other. The aim of the present study was to examine the association between trauma-related guilt and pain among veterans with PTSD. Participants were 140 veterans enrolling in treatment for PTSD and alcohol use disorder. Trauma-related guilt was assessed by the trauma-related guilt inventory, including the global guilt, distress, and guilt cognitions scales. Measures of pain included pain severity, pain disability, and fear of pain. Several significant bivariate associations were observed between trauma-related guilt scales and pain outcomes; however, in linear regression models, only the association between thoughts of trauma-related guilt and fear of pain remained statistically significant after controlling for confounding factors. Further, thoughts of trauma-related guilt, specifically thoughts of wrongdoing, partially mediated the association between PTSD severity and fear of pain. Our findings suggest that trauma-related guilt may play a role in the relationship between PTSD and chronic pain. Future research is encouraged to examine thoughts of trauma-related guilt as a potential therapeutic target in the treatment of persons with comorbid PTSD and chronic pain.

Learn More >

Activation of sphingosine 1-phosphate receptor 2 attenuates chemotherapy-induced neuropathy.

Platinum-based therapeutics are used to manage many forms of cancer, but frequently result in peripheral neuropathy. Currently, the only option available to attenuate chemotherapy-induced neuropathy is to limit or discontinue this treatment. Sphingosine 1-phosphate (S1P) is a lipid-based signaling molecule involved in neuroinflammatory processes by interacting with its five cognate receptors: S1P In this study, using a combination of drug pharmacodynamics, analysis in human study participants, disease modeling in rodents, and cell-based assays, we examined whether S1P signaling may represent a potential target in the treatment of chemotherapy-induced neuropathy. To this end, we first investigated the effects of platinum-based drugs on plasma S1P levels in human cancer patients. Our analysis revealed that oxaliplatin treatment specifically increases one S1P species, d16:1 S1P, in these patients. Although d16:1 S1P is an S1P agonist, it has lower potency than the most abundant S1P species (d18:1 S1P). Therefore, as d16:1 S1P concentration increases, it is likely to disproportionately activate proinflammatory S1P signaling, shifting the balance away from S1P We further show that a selective S1P agonist, CYM-5478, reduces allodynia in a rat model of cisplatin-induced neuropathy and attenuates the associated inflammatory processes in the dorsal root ganglia, likely by activating stress response proteins, including ATF3 and HO-1. Cumulatively, the findings of our study suggest that the development of a specific S1P agonist may represent a promising therapeutic approach for the management of chemotherapy-induced neuropathy.

Learn More >

Clinical and Cost-Effectiveness Analysis of Telerehabilitation for People With Nonspecific Chronic Low Back Pain.

Telerehabilitation can facilitate multidisciplinary management for people with nonspecific chronic low back pain (NCLBP). It provides access to health care to individuals who are physically and economically disadvantaged.

Learn More >

Data-science-based subgroup analysis of persistent pain during 3 years after breast cancer surgery.

Persistent pain extending beyond 6 months after breast cancer surgery when adjuvant therapies have ended is a recognised phenomenon. The evolution of postsurgery pain is therefore of interest for future patient management in terms of possible prognoses for distinct groups of patients to enable better patient information.

Learn More >

Inactivation Kinetics and Mechanical Gating of Piezo1 Ion Channels Depend on Subdomains within the Cap.

Piezo1 ion channels are activated by mechanical stimuli and mediate the sensing of blood flow. Although cryo-electron microscopy (cryo-EM) structures have revealed the overall architecture of Piezo1, the precise domains involved in activation and subsequent inactivation have remained elusive. Here, we perform a targeted chimeric screen between Piezo1 and the closely related isoform Piezo2 and use electrophysiology to characterize their inactivation kinetics during mechanical stimulation. We identify three small subdomains within the extracellular cap that individually can confer the distinct kinetics of inactivation of Piezo2 onto Piezo1. We further show by cysteine crosslinking that conformational flexibility of these subdomains is required for mechanical activation to occur and that electrostatic interactions functionally couple the cap to the extensive blades, which have been proposed to function as sensors of membrane curvature and tension. This study provides a demonstration of internal gating motions involved in mechanotransduction by Piezo1.

Learn More >

Transcriptional Programming of Human Mechanosensory Neuron Subtypes from Pluripotent Stem Cells.

Efficient and homogeneous in vitro generation of peripheral sensory neurons may provide a framework for novel drug screening platforms and disease models of touch and pain. We discover that, by overexpressing NGN2 and BRN3A, human pluripotent stem cells can be transcriptionally programmed to differentiate into a surprisingly uniform culture of cold- and mechano-sensing neurons. Although such a neuronal subtype is not found in mice, we identify molecular evidence for its existence in human sensory ganglia. Combining NGN2 and BRN3A programming with neural crest patterning, we produce two additional populations of sensory neurons, including a specialized touch receptor neuron subtype. Finally, we apply this system to model a rare inherited sensory disorder of touch and proprioception caused by inactivating mutations in PIEZO2. Together, these findings establish an approach to specify distinct sensory neuron subtypes in vitro, underscoring the utility of stem cell technology to capture human-specific features of physiology and disease.

Learn More >

The association between believing staying active is beneficial and achieving a clinically relevant functional improvement after 52 weeks: a prospective cohort study of patients with chronic low back pain in secondary care.

According to clinical guidelines, advice to stay active despite experiencing pain is recommended to patients with non-specific low back pain (LBP). However, not all patients receive guideline-concordant information and advice, and some patients still believe that activity avoidance will help them recover. The purpose was to study whether guideline-concordant beliefs among patients and other explanatory variables were associated with recovery. The main aim was to investigate whether believing staying active despite having pain is associated with a better functional outcome.

Learn More >

Safety and tolerability of monthly galcanezumab injections in patients with migraine: integrated results from migraine clinical studies.

Galcanezumab, a humanized monoclonal antibody that selectively binds to calcitonin gene-related peptide, has demonstrated a significant reduction in monthly migraine headache days in phase 2 and 3 trials. In these analyses, we aimed to evaluate the safety and tolerability of galcanezumab compared with placebo for prevention of episodic or chronic migraine.

Learn More >

Search