I am a
Home I AM A Search Login

Human Studies

Share this

Identification of the common differentially expressed genes and pathogenesis between neuropathic pain and aging.

Neuropathic pain is a debilitating disease caused by damage or diseases of the somatosensory nervous system. Previous research has indicated potential associations between neuropathic pain and aging. However, the mechanisms by which they are interconnected remain unclear. In this study, we aim to identify the common differentially expressed genes (co-DEGs) between neuropathic pain and aging through integrated bioinformatics methods and further explore the underlying molecular mechanisms.

Learn More >

Topology of pain networks in patients with temporomandibular disorder and pain-free controls with and without concurrent experimental pain: A pilot study.

Temporomandibular disorders (TMD) involve chronic pain in the masticatory muscles and jaw joints, but the mechanisms underlying the pain are heterogenous and vary across individuals. In some cases, structural, functional, and metabolic changes in the brain may underlie the condition. In the present study, we evaluated the functional connectivity between 86 regions of interest (ROIs), which were chosen based on previously reported neuroimaging studies of pain and differences in brain morphology identified in an initial surface-based morphometry analysis. Our main objectives were to investigate the topology of the network formed by these ROIs and how it differs between individuals with TMD and chronic pain ( = 16) and pain-free control participants ( = 12). In addition to a true resting state functional connectivity scan, we also measured functional connectivity during a 6-min application of a noxious cuff stimulus applied to the left leg. Our principal finding is individuals with TMD exhibit more suprathreshold correlations (higher nodal degree) among all ROIs but fewer "hub" nodes (i.e., decreased betweenness centrality) across conditions and across all pain pathways. These results suggest is this pain-related network of nodes may be "over-wired" in individuals with TMD and chronic pain compared to controls, both at rest and during experimental pain.

Learn More >

Proinflammatory profile in the skin of Parkinson’s disease patients with and without pain.

Pain is a common non-motor symptom of Parkinson`s disease (PD), however, its pathomechanism remains elusive.

Learn More >

Characterization of plasma metabolites and proteins in patients with herpetic neuralgia and development of machine learning predictive models based on metabolomic profiling.

Herpes zoster (HZ) is a localized, painful cutaneous eruption that occurs upon reactivation of the herpes virus. Postherpetic neuralgia (PHN) is the most common chronic complication of HZ. In this study, we examined the metabolomic and proteomic signatures of disease progression in patients with HZ and PHN. We identified differentially expressed metabolites (DEMs), differentially expressed proteins (DEPs), and key signaling pathways that transition from healthy volunteers to the acute or/and chronic phases of herpetic neuralgia. Moreover, some specific metabolites correlated with pain scores, disease duration, age, and pain in sex dimorphism. In addition, we developed and validated three optimal predictive models (AUC > 0.9) for classifying HZ and PHN from healthy individuals based on metabolic patterns and machine learning. These findings may reveal the overall metabolomics and proteomics landscapes and proposed the optimal machine learning predictive models, which provide insights into the mechanisms of HZ and PHN.

Learn More >

Cranial autonomic symptoms and response to monoclonal antibodies targeting the Calcitonin gene-related peptide pathway: A real-world study.

Cranial autonomic symptoms (CAS), including conjunctival injection, tearing, nasal congestion or rhinorrhea, eyelid edema, miosis or ptosis, and forehead or facial sweating ipsilateral to headache, are often reported by patients with migraine during headache attacks. CAS is a consequence of the activation of the trigeminovascular system, which is the target of monoclonal antibodies acting on the CGRP pathway. Therefore, we hypothesized that patients with CAS might have higher trigeminovascular activation than those without CAS leading to a better response to anti-CGRP treatments.

Learn More >

Catastrophizing, Kinesiophobia, and Acceptance as Mediators of the Relationship Between Perceived Pain Severity, Self-Reported and Performance-Based Physical Function in Women with Fibromyalgia and Obesity.

Individuals with fibromyalgia and obesity experience significant impairment in physical functioning. Pain catastrophizing, kinesiophobia, and pain acceptance have all been identified as important factors associated with the level of disability. The objective of this study was to evaluate the role of pain catastrophizing, kinesiophobia, and pain acceptance as mediators of the association between perceived pain severity and physical functioning in individuals with fibromyalgia and obesity.

Learn More >

Altered static functional network connectivity predicts the efficacy of non-steroidal anti-inflammatory drugs in migraineurs without aura.

Brain networks have significant implications for the understanding of migraine pathophysiology and prognosis. This study aimed to investigate whether large-scale network dysfunction in patients with migraine without aura (MwoA) could predict the efficacy of non-steroidal anti-inflammatory drugs (NSAIDs). Seventy patients with episodic MwoA and 33 healthy controls (HCs) were recruited. Patients were divided into MwoA with effective NSAIDs (M-eNSAIDs) and with ineffective NSAIDs (M-ieNSAIDs). Group-level independent component analysis and functional network connectivity (FNC) analysis were used to extract intrinsic networks and detect dysfunction among these networks. The clinical characteristics and FNC abnormalities were considered as features, and a support vector machine (SVM) model with fivefold cross-validation was applied to distinguish the subjects at an individual level. Dysfunctional connections within seven networks were observed, including default mode network (DMN), executive control network (ECN), salience network (SN), sensorimotor network (SMN), dorsal attention network (DAN), visual network (VN), and auditory network (AN). Compared with M-ieNSAIDs and HCs, patients with M-eNSAIDs displayed reduced DMN-VN and SMN-VN, and enhanced VN-AN connections. Moreover, patients with M-eNSAIDs showed increased FNC patterns within ECN, DAN, and SN, relative to HCs. Higher ECN-SN connections than HCs were revealed in patients with M-ieNSAIDs. The SVM model demonstrated that the area under the curve, sensitivity, and specificity were 0.93, 0.88, and 0.89, respectively. The widespread FNC impairment existing in the modulation of medical treatment suggested FNC disruption as a biomarker for advancing the understanding of neurophysiological mechanisms and improving the decision-making of therapeutic strategy.

Learn More >

Predicting at-risk opioid use three months after ed visit for trauma: Results from the AURORA study.

Whether short-term, low-potency opioid prescriptions for acute pain lead to future at-risk opioid use remains controversial and inadequately characterized. Our objective was to measure the association between emergency department (ED) opioid analgesic exposure after a physical, trauma-related event and subsequent opioid use. We hypothesized ED opioid analgesic exposure is associated with subsequent at-risk opioid use.

Learn More >

Reliability and validity of the Japanese version of Pain Disability Index.

This study evaluated the reliability and validity of a Japanese version of Pain Disability Index (PDI). Analyses were conducted on a 7-item version (PDI-J) and a 5-item (PDI-5-J version of the PDI). Using a web-based survey system, we recruited 300 individuals with chronic low back pain (lasting ≥3 months) and 300 individuals with chronic daily headache (lasting ≥15 days per month for 3 months) aged 20-64 years. Analyses revealed a one-factor with goodness-of-fit indices assessed by confirmatory factor analysis. For concurrent validity, we calculated Pearson's correlation coefficients among the PDI-J, PDI-5-J, Pain Disability Assessment Scale, Pain numerical rating scale, and revised version of Short-Form McGill Pain Questionnaire. Internal consistency was evaluated by Cronbach's α, and test-retest reliability was assessed with intraclass correlations (ICCs) in 100 of 600 participants a week after the first response. Both Japanese adaptations of the PDI demonstrated good concurrent validity and reliability (Cronbach's α was 0.89 for PDI-J in chronic low back pain or chronic daily headache, and 0.94 and 0.93 for PDI-5-J in chronic low back pain and chronic daily headache, respectively). The PDI-J and PDI-5-J showed were highly correlated (r = 0.98). ICCs were 0.67 and 0.59 for the PDI-J and 0.59 and 0.63 for the PDI-5-J in chronic low back pain and chronic daily headache, respectively. In conclusion, these two PDI versions can be potentially used for evaluating pain-related interference with daily activities among the Japanese general population.

Learn More >

Alterations in brain structure associated with trigeminal nerve anatomy in episodic migraine.

The pathophysiology of migraine remains to be elucidated. We have recently shown that interictal migraineurs exhibit reduced fractional anisotropy (FA) in the root entry zone of the trigeminal nerve when compared to controls, but it is not known if this altered nerve anatomy is associated with changes within the brainstem or higher cortical brain regions. Diffusion tensor imaging of the brain was used to calculate regional measures of structure, including mean diffusivity (MD), axial diffusivity (AX) and radial diffusivity (RD) in addition to voxel-based morphometry of T1-weighted anatomical images. Linear relationships between trigeminal nerve anatomy (FA) and MD throughout the brainstem and/or higher cortical regions were determined in both controls ( = 31, brainstem; = 38, wholebrain) and interictal migraineurs ( = 32, brainstem; = 38, wholebrain). Additionally, within the same brain areas, relationships of AX and RD with nerve FA were determined. We found that in both interictal migraine and control participants, decreasing trigeminal nerve FA was associated with significantly increased MD in brainstem regions including the spinal trigeminal nucleus and midbrain periaqueductal gray matter (PAG), and in higher brain regions such as the hypothalamus, insula, posterior cingulate, primary somatosensory and primary visual (V1) cortices. Whereas, both control and migraineur groups individually displayed significant inverse correlations between nerve FA and MD, in migraineurs this pattern was disrupted in the areas of the PAG and V1, with only the control group displaying a significant linear relationship (PAG controls = -0.58, = 0.003; migraineurs = -0.25, = 0.17 and V1 controls = -0.52, = 0.002; migraineurs = -0.10, = 0.55). Contrastingly, we found no gray matter volume changes in brainstem or wholebrain areas. These data show that overall, trigeminal nerve anatomy is significantly related to regional brain structure in both controls and migraineurs. Importantly, the PAG showed a disruption of this relationship in migraineurs suggesting that the anatomy and possibly the function of the PAG is uniquely altered in episodic migraine, which may contribute to altered orofacial pain processing in migraine.

Learn More >

Search