I am a
Home I AM A Search Login

Animal Studies

Share this

Histone methyltransferase G9a diminishes expression of cannabinoid CB1 receptors in primary sensory neurons in neuropathic pain.

Type-1 cannabinoid receptors (CB1Rs) are expressed in the dorsal root ganglion (DRG) and contribute to the analgesic effect of cannabinoids. However, the epigenetic mechanism regulating the expression of CB1Rs in neuropathic pain is unknown. G9a (encoded by the Ehmt2 gene), a histone 3 at lysine 9 (H3K9) methyltransferase, is a key chromatin regulator responsible for gene silencing. In this study, we determined G9a's role in regulating CB1R expression in the DRG and in CB1R-mediated analgesic effects in an animal model of neuropathic pain. We show that nerve injury profoundly reduces mRNA levels CB1Rs but increases the expression of CB2 receptors in the rat DRG. Chromatin-immunoprecipitation results indicated increased enrichment of H3K9me2, a G9a-catalyzed repressive histone mark, at the promoter regions of the CB1R genes. G9a inhibition in nerve-injured rats not only upregulates CB1R expression level in the DRG but also potentiated the analgesic effect of a CB1R agonist on nerve injury-induced pain hypersensitivity. Furthermore, in mice lacking Ehmt2 in DRG neurons, nerve injury failed to reduce CB1R expression in the DRG and to decrease the analgesic effect of the CB1R agonist. Moreover, nerve injury diminished the inhibitory effect of the CB1R agonist on synaptic glutamate release from primary afferent nerves to spinal cord dorsal horn neurons in wild-type mice, but not in mice lacking Ehmt2 in DRG neurons. Our findings reveal that nerve injury diminishes the analgesic effect of CB1R agonists through G9a-mediated CB1R downregulation in primary sensory neurons.

Learn More >

SIRT1 decreases emotional pain vulnerability with associated CaMKIIα deacetylation in central amygdala.

Emotional disorders are common comorbid conditions that further exacerbate the severity and chronicity of chronic pain. However, individuals show considerable vulnerability to developing chronic pain under similar pain conditions. In this study on male rat and mouse models of chronic neuropathic pain, we identify the histone deacetylase SIRT1 in central amygdala as a key epigenetic regulator that controls the development of comorbid emotional disorders underlying the individual vulnerability to chronic pain. We found that animals that were vulnerable to developing behaviors of anxiety and depression under the pain condition displayed reduced SIRT1 protein in central amygdala, but not those animals resistant to the emotional disorders. Viral overexpression of local SIRT1 reversed this vulnerability, but viral knockdown of local SIRT1 mimicked the pain effect, eliciting the pain vulnerability in pain-free animals. The SIRT1 action was associated with CaMKIIα downregulation and deacetylation of histone H3 lysine 9 at the promoter. These results suggest that, by transcriptional repression of in central amygdala, SIRT1 functions to guard against the emotional pain vulnerability under chronic pain conditions. This study indicates that SIRT1 may serve as a potential therapeutic molecule for individualized treatment of chronic pain with vulnerable emotional disorders.Chronic pain is a prevalent neurological disease with no effective treatment at present. Pain patients display considerably variable vulnerability to developing chronic pain, indicating individual-based molecular mechanisms underlying the pain vulnerability, which is hardly addressed in current preclinical research. In this study, we have identified the histone deacetylase Sirtuin 1 (SIRT1) as a key regulator that controls this pain vulnerability. This study reveals that the SIRT1–CaMKIIaα pathway in central amygdala acts as an epigenetic mechanism that guards against the development of comorbid emotional disorders under chronic pain, and that its dysfunction causes increased vulnerability to developing chronic pain. These findings suggest that SIRT1 activators may be used in a novel therapeutic approach for individual-based treatment of chronic pain.

Learn More >

Opioid presynaptic disinhibition of the midbrain periaqueductal grey descending analgesic pathway.

The midbrain periaqueductal grey (PAG) plays a central role in modulating pain through a descending pathway that projects indirectly to the spinal cord via the rostroventral medial medulla (RVM). While opioids are potent analgesics that target the PAG, their cellular actions on descending projection neurons are unclear.

Learn More >

Sensory nociceptive neurons contribute to host protection during enteric infection with Citrobacter rodentium.

Neurons are an integral component of the immune system that functions to coordinate responses to bacterial pathogens. Sensory nociceptive neurons that can detect bacterial pathogens are found throughout the body with dense innervation of the intestinal tract. Here we assessed the role of these nerves in the coordination of host defenses to Citrobacter rodentium. Selective ablation of nociceptive neurons significantly increased bacterial burden 10 days post infection and delayed pathogen clearance. Since the sensory neuropeptide CGRP regulates host-responses during infection of the skin, lung, and small intestine, we assessed the role of CGRP receptor signaling during C. rodentium infection. Although CGRP receptor blockade reduced certain pro-inflammatory gene expression, bacterial burden and Il-22 expression was unaffected. Our data highlight that sensory nociceptive neurons exert a significant host protective role during C. rodentium infection, independent of CGRP receptor signaling.

Learn More >

Specific Ion Channels Control Sensory Gain, Sensitivity, and Kinetics in a Tonic Thermonociceptor.

Pain sensation and aversive behaviors entail the activation of nociceptor neurons, whose function is largely conserved across animals. The functional heterogeneity of nociceptors and ethical concerns are challenges for their study in mammalian models. Here, we investigate the function of a single type of genetically identified C. elegans thermonociceptor named FLP. Using calcium imaging in vivo, we demonstrate that FLP encodes thermal information in a tonic and graded manner over a wide thermal range spanning from noxious cold to noxious heat (8°C-36°C). This tonic-signaling mode allows FLP to trigger sustained behavioral changes necessary for escape behavior. Furthermore, we identify specific transient receptor potential, voltage-gated calcium, and sodium "leak" channels controlling sensory gain, thermal sensitivity, and signal kinetics, respectively, and show that the ryanodine receptor is required for long-lasting activation. Our work elucidates the task distribution among specific ion channels to achieve remarkable sensory properties in a tonic thermonociceptor in vivo.

Learn More >

METTL3 regulates inflammatory pain by modulating mA-dependent pri-miR-365-3p processing.

N-methyladenosine (mA) modification in RNA has been implicated in diverse biological processes. However, very little is currently known about its role in nociceptive modulation. Here, we found that the level of spinal mA modification was significantly increased in a mouse model of Complete Freund's Adjuvant (CFA)-induced chronic inflammatory pain, which was accompanied with the augmentation of methyltransferase-like 3 (METTL3) expression in the spinal cord. Knockdown of spinal METTL3 prevented and reversed CFA-induced pain behaviors and spinal neuronal sensitization. In contrast, overexpression of spinal METTL3 produced pain behaviors and neuronal sensitization in naive mice. Moreover, we found that METTL3 positively modulated the pri-miR-65-3p processing in a microprocessor protein DiGeorge critical region 8-dependent manner. Collectively, our findings reveal an important role of METTL3-mediated mA modification in nociceptive sensitization and provide a novel perspective on mA modification in the development of pathological pain.

Learn More >

Identification of avoidance genes through neural pathway-specific forward optogenetics.

Understanding how the nervous system bridges sensation and behavior requires the elucidation of complex neural and molecular networks. Forward genetic approaches, such as screens conducted in C. elegans, have successfully identified genes required to process natural sensory stimuli. However, functional redundancy within the underlying neural circuits, which are often organized with multiple parallel neural pathways, limits our ability to identify 'neural pathway-specific genes', i.e. genes that are essential for the function of some, but not all of these redundant neural pathways. To overcome this limitation, we developed a 'forward optogenetics' screening strategy in which natural stimuli are initially replaced by the selective optogenetic activation of a specific neural pathway. We used this strategy to address the function of the polymodal FLP nociceptors mediating avoidance of noxious thermal and mechanical stimuli. According to our expectations, we identified both mutations in 'general' avoidance genes that broadly impact avoidance responses to a variety of natural noxious stimuli (unc-4, unc-83, and eat-4) and mutations that produce a narrower impact, more restricted to the FLP pathway (syd-2, unc-14 and unc-68). Through a detailed follow-up analysis, we further showed that the Ryanodine receptor UNC-68 acts cell-autonomously in FLP to adjust heat-evoked calcium signals and aversive behaviors. As a whole, our work (i) reveals the importance of properly regulated ER calcium release for FLP function, (ii) provides new entry points for new nociception research and (iii) demonstrates the utility of our forward optogenetic strategy, which can easily be transposed to analyze other neural pathways.

Learn More >

Acyloxyacyl hydrolase is a host determinant of gut microbiome-mediated pelvic pain.

Dysbiosis of gut microbiota is associated with many pathologies, yet host factors modulating microbiota remain unclear. Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating condition of chronic pelvic pain often with co-morbid urinary dysfunction and anxiety/depression, and recent studies find fecal dysbiosis in IC/BPS patients. We identified the locus encoding acyloxyacyl hydrolase, Aoah, as a modulator of pelvic pain severity in a murine IC/BPS model. AOAH-deficient mice spontaneously develop rodent correlates of pelvic pain, increased responses to induced pelvic pain models, voiding dysfunction, and anxious/depressive behaviors. Here, we report that AOAH-deficient mice exhibit dysbiosis of GI microbiota. AOAH-deficient mice exhibit an enlarged cecum, a phenotype long associated with germ-free rodents, and a "leaky gut" phenotype. AOAH-deficient ceca showed altered gene expression consistent with inflammation, Wnt signaling, and urologic disease. 16S sequencing of stool revealed altered microbiota in AOAH-deficient mice, and GC-MS identified altered metabolomes. Co-housing AOAH-deficient mice with wild type mice resulted in converged microbiota and altered predicted metagenomes. Co-housing also abrogated the pelvic pain phenotype of AOAH-deficient mice, which was corroborated by oral gavage of AOAH-deficient mice with stool slurry of wild type mice. Converged microbiota also alleviated comorbid anxiety-like behavior in AOAH-deficient mice. Oral gavage of AOAH-deficient mice with anaerobes cultured from IC/BPS stool resulted in exacerbation of pelvic allodynia. Together, these data indicate that AOAH is a host determinant of normal gut microbiota, and dysbiosis associated with AOAH deficiency contributes to pelvic pain. These findings suggest that the gut microbiome is a potential therapeutic target for IC/BPS.

Learn More >

NMDA Receptor-Dependent Synaptic Depression in Potentiated Synapses of the Anterior Cingulate Cortex of adult Mice.

Long-term potentiation (LTP) is an important molecular mechanism for chronic pain in the anterior cingulate cortex (ACC), a key cortical region for pain perception and emotional regulation. Inhibiting ACC LTP via various manipulations or pharmacological treatments blocks chronic pain. Long-term depression (LTD) is another form of synaptic plasticity in the ACC, which is also proved to be involved in the mechanisms of chronic pain. However, less is known about the interactive relationship between LTP and LTD in the ACC. Whether the synaptic depression could be induced after synaptic LTP in the ACC is not clear. In the present study, we used multi-channel field potential recording systems to study synaptic depression after LTP in the ACC of adult mice. We found that low frequency stimulus (LFS: 1 Hz, 15 min) inhibited theta burst stimulation (TBS)-induced LTP at 30 min after the induction of LTP. However, LFS failed to induce depression at 90 min after the induction of LTP. Furthermore, NMDA receptor antagonist AP-5 blocked the induction of synaptic depression after potentiation. The GluN2B-selective antagonist Ro25-6981 also inhibited the phenomenon in the ACC, while the GluN2A-selective antagonist NVP-AAM077 and the GluN2C/D-selective antagonist PPDA and UBP145 had no any significant effect. These results suggest that synaptic LTP can be depressed by LTD in a time dependent manner, and GluN2B-containing NMDA receptors play important roles in this form of synaptic depression.

Learn More >

The interaction between P2X3 and TRPV1 in the dorsal root ganglia of adult rats with different pathological pains.

Peripheral inflammatory and neuropathic pain are closely related to the activation of purinergic receptor P2X ligand-gated ion channel 3 (P2X3) and transient receptor potential vanilloid 1 (TRPV1), but the interaction between P2X3 and TRPV1 in different types of pathological pain has rarely been reported. In this study, complete Freund's adjuvant (CFA)-induced inflammatory pain and spared nerve injury (SNI)-induced neuropathic pain models were established in adult rats. The interactions between P2X3 and TRPV1 in the dorsal root ganglion were observed by pharmacological, co-immunoprecipitation, immunofluorescence and whole-cell patch-clamp recording assays. TRPV1 was shown to promote the induction of spontaneous pain caused by P2X3 in the SNI model, but the induction of spontaneous pain behaviour by TRPV1 was not completely dependent on P2X3 . In both the CFA and SNI models, the activation of peripheral P2X3 enhanced the effect of TRPV1 on spontaneous pain, while the inhibition of peripheral TRPV1 reduced the induction of spontaneous pain by P2X3 in the CFA model. TRPV1 and P2X3 had inhibitory effects on each other in the inflammatory pain model. During neuropathic pain, P2X3 facilitated the function of TRPV1, while TRPV1 had an inhibitory effect on P2X3. These results suggest that the mutual effects of P2X3 and TRPV1 differ in cases of inflammatory and neuropathic pain in rats.

Learn More >

Search