I am a
Home I AM A Search Login

Animal Studies

Share this

Structural basis of cooling agent and lipid sensing by the cold-activated TRPM8 channel.

Transient receptor potential melastatin member 8 (TRPM8) is a Ca-permeable cation channel that serves as the primary cold and menthol sensor in humans. Activation of TRPM8 by cooling compounds relies on allosteric actions of agonist and membrane lipid phosphatidylinositol-4,5-bisphosphate (PIP), but lack of structural information has thus far precluded a mechanistic understanding of ligand and lipid sensing by TRPM8. Using cryo-electron microscopy, we determined the structures of TRPM8 in complex with the synthetic cooling compound icilin, PIP, and Ca and in complex with the menthol analog WS-12 and PIP Our structures reveal the binding sites for cooling agonists and PIP in TRPM8. Notably, PIP binds to TRPM8 in two different modes, which illustrate the mechanism of allosteric coupling between PIP and agonists. This study provides a platform for understanding the molecular mechanism of TRPM8 activation by cooling agents.

Learn More >

Alterations in brain neurocircuitry following treatment with the chemotherapeutic agent paclitaxel in rats.

Human and animal studies suggest that both traumatic nerve injury and toxic challenge with chemotherapeutic agents involves the reorganization of neural circuits in the brain. However, there have been no prospective studies, human or animal, using magnetic resonance imaging (MRI) to identify changes in brain neural circuitry that accompany the development of chemotherapy-induced neuropathic pain (i.e. within days following cessation of chemotherapy treatment and without the confound cancer). To this end, different MRI protocols were used to ascertain whether a reorganization of brain neural circuits is observed in otherwise normal rats exposed to the taxane chemotherapeutic agent paclitaxel. We conducted an imaging study to evaluate the impact of a well-established paclitaxel dosing regimen, validated to induce allodynia in control rats within eight days of treatment, on brain neural circuitry. Rats received either paclitaxel (2 mg/kg/day i.p; cumulative dose of 8 mg/kg) or its vehicle four times on alternate days (i.e. day 0, 2, 4, 6). Following the cessation of treatments (i.e. on day 8), all rats were tested for responsiveness to cold followed by diffusion weighted magnetic resonance imaging and assessment of resting state functional connectivity. Imaging data were analyzed using a 3D MRI rat with 173 segmented and annotated brain areas. Paclitaxel-treated rats were more sensitive to a cold stimulus compared to controls. Diffusion weighted imaging identified brain areas involved in the emotional and motivational response to chronic pain that were impacted by paclitaxel treatment. Affected brain regions included the prefrontal cortex, amygdala, hippocampus, hypothalamus and the striatum/nucleus accumbens. This putative reorganization of gray matter microarchitecture formed a continuum of brain areas stretching from the basal medial/lateral forebrain to the midbrain. Resting state functional connectivity showed reorganization between the periaqueductal gray, a key node in nociceptive neural circuitry, and connections to the brainstem. Our results, employing different imaging modalities to assess the central nervous system effects of chemotherapy, fit the theory that chronic pain is regulated by emotion and motivation and influences activity in the periaqueductal gray and brainstem to modulate pain perception.

Learn More >

Involvement of inflammasome activation via elevation of uric acid level in nociception in a mouse model of muscle pain.

Muscle pain is a common condition in many diseases and is induced by muscle overuse. Muscle overuse induces an increase in uric acid, which stimulates the nucleotide-binding oligomerization domain-like receptor (NLR). This receptor contains the pyrin domain NLRP-3 inflammasome which when activated, results in the secretion of potent pro-inflammatory cytokines such as interleukin-1β (IL-1β). The aim of this study was to investigate the involvement of inflammasome activation via the elevation of uric acid level in nociception in a mouse model of muscle pain. The right hind leg muscles of BALB/c mice were stimulated electrically to induce excessive muscle contraction. The left hind leg muscles were not stimulated as a control. Mechanical withdrawal thresholds (MWTs), levels of uric acid, IL-1β, and NLRP3, caspase-1 activity, and the number of macrophages were investigated. Furthermore, the effects of xanthine oxidase inhibitors, such as Brilliant Blue G, caspase-1 inhibitor, and clodronate liposome, on pain were investigated. In the stimulated muscles, MWTs decreased, and the levels of uric acid, NLRP3, and IL-1β, caspase-1 activity, and the number of macrophages increased compared to that in the non-stimulated muscles. Administration of the inhibitors attenuated hyperalgesia caused by excessive muscle contraction. These results suggested that IL-1β secretion and NLRP3 inflammasome activation in macrophages produced mechanical hyperalgesia by elevating uric acid level, and xanthine oxidase inhibitors may potentially reduce over-exercised muscle pain.

Learn More >

The Effects of Cobalt Protoporphyrin IX and Tricarbonyldichlororuthenium (II) Dimer Treatments and Its Interaction with Nitric Oxide in the Locus Coeruleus of Mice with Peripheral Inflammation.

Heme oxygenase 1 (HO-1) and carbon monoxide were shown to normalize oxidative stress and inflammatory reactions induced by neuropathic pain in the central nervous system, but their effects in the locus coeruleus (LC) of animals with peripheral inflammation and their interaction with nitric oxide are unknown. In wild-type (WT) and knockout mice for neuronal (NOS1-KO) or inducible (NOS2-KO) nitric oxide synthases with inflammatory pain induced by complete Freund's adjuvant (CFA), we assessed: 1) antinociceptive actions of cobalt protoporphyrin IX (CoPP), an HO-1 inducer; 2) effects of CoPP and tricarbonyldichlororuthenium(II)dimer (CORM-2), a carbon monoxide-liberating compound, on the expression of HO-1, NOS1, NOS2, CD11b/c, GFAP,and mitogen-activated protein kinases (MAPK)in the LC. CoPP reduced inflammatory pain in different time-dependent manners in WT and KO mice. Peripheral inflammation activated astroglia in the LC of all genotypes and increased the levels of NOS1 and phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK 1/2) in WT mice. CoPP and CORM-2 enhanced HO-1 and inhibited astroglial activationin all genotypes. Both treatments blocked NOS1 overexpression,and CoPP normalized ERK 1/2 activation. This study reveals an interaction between HO-1 and NOS1/NOS2 during peripheral inflammation andshows that CoPP and CORM-2 improved HO-1 expression and modulated the inflammatory and/or plasticity changes caused by peripheral inflammation in the LC.

Learn More >

Stereotyped transcriptomic transformation of somatosensory neurons in response to injury.

In mice, spared nerve injury replicates symptoms of human neuropathic pain and induces upregulation of many genes in somatosensory neurons. Here we used single cell transcriptomics to probe the effects of partial infraorbital transection of the trigeminal nerve at the cellular level. Uninjured neurons were unaffected by transection of major nerve branches, segregating into many different classes. In marked contrast, axotomy rapidly transformed damaged neurons into just two new and closely-related classes where almost all original identity was lost. Remarkably, sensory neurons also adopted this transcriptomic state following various minor peripheral injuries. By genetically marking injured neurons, we showed that the injury-induced transformation was reversible, with damaged cells slowly reacquiring normal gene expression profiles. Thus, our data expose transcriptomic plasticity, previously thought of as a driver of chronic pain, as a programed response to many types of injury and a potential mechanism for regulating sensation during wound healing.

Learn More >

Sacral nerve stimulation with optimized parameters improves visceral hypersensitivity in rats mediated via the autonomic pathway.

The purpose of this study was to determine effects and mechanisms of sacral nerve stimulation (SNS) on visceral hypersensitivity in rodent models of colonic hypersensitivity. SNS was performed with different sets of parameters for 30 minutes in six regular rats. Visceral sensitivity was assessed by the measurement of electromyogram (EMG) and abdominal withdrawal reflex (AWR) before and after SNS. Real/sham SNS with optimized parameters was performed in eight restraint stress-induced visceral hypersensitivity rats and 10 neonatal acetic acid treated colonic hypersensitivity rats, acute effect of SNS was assessed by comparing EMG and heart rate variability (HRV). Neonatal acetic acid treated rats were treated by SNS (n=10) or sham-SNS (n=10) daily for 7 days for the assessment of the chronic effect of SNS. (1)When the stimulation amplitude was reduced from 90% of motor threshold (MT) to 65% or 40% MT, SNS with certain parameters showed an inhibitory effect on AWR. The best stimulation parameters for SNS was "14Hz, 330μs, and 40% MT". (2)SNS significantly reduced visceral hypersensitivity and improved autonomic function in restraint stress-induced rats. The inhibitory effect was blocked by naloxone.(3)Acute and Chronic SNS significantly reduced visceral hypersensitivity and improved autonomic function in acetic acid treated rats. SNS with reduced stimulation strength may be used to treat colonic hypersensitivity and the best stimulation parameters seem to be"14Hz, 330μs and 40% MT". SNS with optimized parameters improved visceral hypersensitivity in rodent models of colonic hypersensitivity mediated via the autonomic and opioid mechanisms.

Learn More >

Calcium Imaging of Parvalbumin Neurons in the Dorsal Root Ganglia.

We investigated the calcium dynamics of dorsal root ganglion (DRG) neurons using transgenic mice to target expression of the genetically encoded calcium indicator (GECI), GCaMP6s, to a subset of neurons containing parvalbumin (PV), a calcium-binding protein present in proprioceptors and low-threshold mechanoreceptors. This study provides the first analysis of GECI calcium transient parameters from large-diameter DRG neurons. Our approach generated calcium transients of consistent shape and time-course, with quantifiable characteristics. Four parameters of calcium transients were determined to vary independently from each other and thus are likely influenced by different calcium-regulating mechanisms: peak amplitude, rise time (RT), decay time, and recovery time. Pooled analysis of 188 neurons demonstrated unimodal distributions, providing evidence that PV+ DRG neurons regulate calcium similarly as a population despite their differences in size, electrical properties, and functional sensitivities. Calcium transients increased in size with elevated extracellular calcium, longer trains of action potentials, and higher stimulation frequencies. RT and decay time increased with the addition of the selective sarco/endoplasmic reticulum calcium ATPases (SERCA) blocker, thapsigargin (TG), while peak amplitude and recovery time remained the same. When elevating bath pH to 8.8 to block plasma-membrane calcium ATPases (PMCA), all measured parameters significantly increased. These results illustrate that GECI calcium transients provide sufficient resolution to detect changes in electrical activity and intracellular calcium concentration, as well as discern information about the activity of specific subclasses of calcium regulatory mechanisms.

Learn More >

Teriparatide improves pain-related behavior and prevents bone loss in ovariectomized mice.

The aim of this study was to examine the inhibitory effect of teriparatide (TPTD) on pain and on bone loss in ovariectomized (OVX) mice. The mechanism of osteoporotic pain in OVX mice was evaluated through an examination of pain-related behavior as well as immunohistochemical examinations.

Learn More >

Novel charged sodium and calcium channel inhibitor active against neurogenic inflammation.

Voltage-dependent sodium and calcium channels in pain-initiating nociceptor neurons are attractive targets for new analgesics. We made a permanently charged cationic derivative of an N-type calcium channel-inhibitor. Unlike cationic derivatives of local anesthetic sodium channel blockers like QX-314, this cationic compound inhibited N-type calcium channels more effectively with extracellular than intracellular application. Surprisingly, the compound is also a highly effective sodium channel inhibitor when applied extracellularly, producing more potent inhibition than lidocaine or bupivacaine. The charged inhibitor produced potent and long-lasting analgesia in mouse models of incisional wound and inflammatory pain, inhibited release of the neuropeptide calcitonin gene-related peptide (CGRP) from dorsal root ganglion neurons, and reduced inflammation in a mouse model of allergic asthma, which has a strong neurogenic component. The results show that some cationic molecules applied extracellularly can powerfully inhibit both sodium channels and calcium channels, thereby blocking both nociceptor excitability and pro-inflammatory peptide release.

Learn More >

The prolactin receptor long isoform regulates nociceptor sensitization and opioid-induced hyperalgesia selectively in females.

Pain is more prevalent in women for reasons that remain unclear. We have identified a mechanism of injury-free nociceptor sensitization and opioid-induced hyperalgesia (OIH) promoted by prolactin (PRL) in females. PRL signals through mutually inhibitory long (PRLR-L) and short (PRLR-S) receptor isoforms, and PRLR-S activation induces neuronal excitability. PRL and PRLR expression were higher in females. CRISPR-mediated editing of PRLR-L promoted nociceptor sensitization and allodynia in naïve, uninjured female mice that depended on circulating PRL. Opioids, but not trauma-induced nerve injury, decreased PRLR-L promoting OIH through activation of PRLR-S in female mice. Deletion of both PRLR-L and PRLR-S (total PRLR) prevented, whereas PRLR-L overexpression rescued established OIH selectively in females. Inhibition of circulating PRL with cabergoline, a dopamine D2 agonist, up-regulated PRLR-L and prevented OIH only in females. The PRLR-L isoform therefore confers protection against PRL-promoted pain in females. Limiting PRL/PRLR-S signaling pharmacologically or with gene therapies targeting the PRLR may be effective for reducing pain in a female-selective manner.

Learn More >

Search