I am a
Home I AM A Search Login

Animal Studies

Share this

Necrostatin-1 Ameliorates Peripheral Nerve Injury-Induced Neuropathic Pain by Inhibiting the RIP1/RIP3 Pathway.

Necrostatin-1 is an inhibitor of necroptosis, a form of programmed cell death that has been reported to be involved in various neurological diseases. Presently, the role of necroptosis in neuropathic pain induced by peripheral nerve injury is still unclear. This study was focused on investigating the potential effects of necroptosis in the development and progression of neuropathic pain in a rat model and the possible neuroprotective effects of necrostatin-1 in neuropathic pain. The results indicated that the necroptosis-related proteins RIP1 and RIP3 significantly increased postoperation in the spinal cord in a neuropathic pain model and peaked 7 days postoperation, which was consistent with the time-dependent changes of hyperalgesia. Additionally, we found that peripheral nerve injury-related behavioral and biochemical changes were significantly reduced by necrostatin-1. In particular, hyperalgesia was attenuated, and the levels of RIP1 and RIP3 were decreased. Furthermore, the ultrastructure of necrotic cell death and neuroinflammation were alleviated by necrostatin-1. Collectively, these results suggest that necroptosis is an important mechanism of cell death in neuropathic pain induced by peripheral nerve injury and that necrostatin-1 may be a promising neuroprotective treatment for neuropathic pain.

Learn More >

Transcriptome profiling of dorsal root ganglia in a rat model of complex regional pain syndrome type-I reveals potential mechanisms involved in pain.

Complex regional pain syndrome type-I (CRPS-I) is a progressive and devastating pain condition, which remains clinically challenging. The mechanisms of CRPS-I still remain largely unknown. We aim to identify transcriptome profiles of genes relevant to pain mechanisms and major pathways involved in CRPS-I. A rat model of chronic post-ischemia pain (CPIP) was established to mimic CRPS-I. RNA-sequencing (RNA-Seq) was used to profile transcriptome of L4-6 dorsal root ganglia (DRGs) of a rat model of CRPS-I. CPIP model rats developed persistent mechanical/thermal hyperalgesia in ipsilateral hind paw. RNA-Seq identified a total of 295 differentially expressed genes (DEGs), including 195 up- and 100 downregulated, in ipsilateral DRGs of CPIP rats compared with sham rats. The expression of several representative genes was confirmed by qPCR. Functional analysis of DEGs revealed that the most significant enriched biological processes of upregulated genes include response to lipopolysaccharide, inflammatory response and cytokine activity, which are all important mechanisms mediating pain. We further screened DEGs implicated in pain progress, genes enriched in small- to medium-sized sensory neurons and enriched in TRPV1-lineage nociceptors. By comparing our dataset with other published datasets of neuropathic or inflammatory pain models, we identified a core set of genes and pathways that extensively participate in CPIP and other neuropathic pain states. Our study identified transcriptome gene changes in DRGs of an animal model of CRPS-I and could provide insights into identifying promising genes or pathways that can be potentially targeted to ameliorate CRPS-I.

Learn More >

Treatment With the Delta Opioid Agonist UFP-512 Alleviates Chronic Inflammatory and Neuropathic Pain: Mechanisms Implicated.

We investigated whether administration of the δ-opioid receptor (DOR) agonist H-Dmt-Tic-NH-CH(CH2-COOH)-Bid (UFP-512), which also activates nuclear factor erythroid 2-related factor 2 (Nrf2), alleviated chronic inflammatory and/or neuropathic pain and inhibited the depressive-like behaviors associated with persistent neuropathic pain. The possible mechanisms implicated were also assessed. We evaluated the following effects in male C57BL/6J mice with inflammatory pain induced by or neuropathic pain caused by the chronic constriction of sciatic nerve: (1) the antinociceptive effects of UFP-512; (2) the effects of UFP-512 on the expression of Nrf2, heme oxygenase 1 (HO-1), NAD(P)H quinone oxidoreductase 1, phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), inducible nitric oxide synthase, DOR, and mitogen-activated protein kinases (MAPK) in the spinal cord of animals with inflammatory or neuropathic pain; (3) the antinociceptive effects of the coadministration of UFP-512 with the Nrf2 activator sulforaphane (SFN); and (4) the antidepressant effects of UFP-512 in animals with depressive-like behaviors associated with neuropathic pain. Our results demonstrated that the intraperitoneal administration of UFP-512 inhibited chronic inflammatory and neuropathic pain and reduced the depressive-like behaviors associated with persistent neuropathic pain. The antiallodynic effects of UFP-512 were significantly augmented when it was coadministered with SFN in both types of chronic pain. The administration of UFP-512 increased/reestablished the spinal cord protein levels of Nrf2 and HO-1 in mice with inflammatory or neuropathic pain. However, while during inflammatory pain UFP-512 inhibited spinal c-Jun N-terminal kinase (JNK) and extracellular signal regulated kinase 1/2 (ERK1/2) phosphorylation induced by peripheral inflammation. This DOR agonist blocked the spinal activated PI3K/Akt signaling pathway under chronic neuropathic pain conditions, but it did not alter the enhanced protein levels of p-JNK or p-ERK1/2 induced by sciatic nerve injury. These results revealed the antinociceptive and antidepressant effects of UFP-512 in animals with chronic pain and the different mechanism of action of this DOR agonist in the presence of inflammatory or neuropathic pain. Our data also suggest the administration of UFP-512 as an alternative for the treatment of chronic pain and the depressive-like behaviors associated with neuropathic pain.

Learn More >

Small RNA sequencing reveals microRNAs related to neuropathic pain in rats.

The present study aimed to identify microRNAs (miRNAs) that are involved in neuropathic pain and predict their corresponding roles in the pathogenesis and development process of neuropathic pain. The rat model of neuropathic pain caused by spared nerve injury (SNI) was established in Sprague-Dawley male rats, followed by small RNA sequencing of the L3-L6 dorsal root ganglion. Real-time PCR was performed to validate the differently expressed miRNAs. Functional verification was performed by intrathecally injecting the animals with miRNA agomir. A total of 72 differentially expressed miRNAs were identified in the SNI rats, including 33 upregulated and 39 downregulated miRNAs. The results of qPCR further verified the expression levels of rno-miR-6215 (P=0.015), rno-miR-1224 (P=0.030), rno-miR-1249 (P=0.038), and rno-miR-488-3p (P=0.048), which were all significantly downregulated in the SNI rats compared to the control ones. The majority of differentially expressed miRNAs were associated with phosphorylation, intracellular signal transduction, and cell death. Target prediction, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses suggested that these differentially expressed miRNAs targeted genes that are related to axon guidance, focal adhesion, and Ras and Wnt signaling pathways. Moreover, miR-1224 agomir significantly alleviated SNI-induced neuropathic pain. The current findings provide new insights into the role of miRNAs in the pathogenesis of neuropathic pain.

Learn More >

Substance P modulates electroacupuncture analgesia in humanized mice with sickle cell disease.

Chronic pain is a major comorbidity of sickle cell disease (SCD). Acupuncture, a non-opioid and non-addictive therapy to treat pain, was found to reduce pain in the majority (80%) of SCD patients in an earlier retrospective review. We observed that electroacupuncture (EA) decreased hyperalgesia in transgenic mice with SCD with varied analgesia from high to moderate to no response. Interestingly, poor responders exhibited high levels of substance P (SP), a mediator of chronic pain, as well as active p38 MAPK in spinal cords. The present study aimed to investigate the roles of inhibition of SP and SP-activated p38 MAPK in chronic pain in sickle mice that are poorly responsive to EA intervention (moderate/non-responders). Humanized mouse model with SCD defined as moderate- and non-responders to EA were intraperitoneally administered with antagonist of SP receptor NK1R (netupitant, 10 mg/kg/day, i.p.) or p38 MAPK inhibitor (SB203580, 10 mg/kg/day, i.p.) alone or in combination with EA (acupoint GB30, every 3rd day until day 12). Hyperalgesia to mechanical, thermal and cold stimuli, as well as deep tissue were measured. Phosphorylated p38 MAPK (phospho-p38 MAPK) in the lumbar spinal cord was quantified using western blotting. Phospho-p38 MAPK nuclear translocation in spinal dorsal horn was examined using immunohistochemical staining and confocal microscopy. In EA poor-responders, combined treatment with EA and netupitant significantly enhanced the analgesic effects of EA in poor-responders on mechanical, heat, cold, and deep tissue pain, and decreased phosphorylation of p38 MAPK in lumbar spinal cords and its nuclear translocation in the spinal dorsal horn. Furthermore, combined treatment with EA and SB203580 significantly improved analgesic effects of EA on mechanical and heat hyperalgesia, but not cold or deep tissue hyperalgesia. However, additional EA treatment only, or administration of either netupitant or SB203580 alone did not lead to analgesic effects. These results suggest a pivotal role of SP in maintaining the chronic pain in SCD via spinal phospho-p38 MAPK signaling, which may hinder the effect of EA in poor responders. Inhibition of SP signaling pathway or activity of p38 MAPK significantly improved the EA analgesia In EA poor-responders with SCD, which provides a promising way to treat the chronic pain in patients with SCD.

Learn More >

MiR-1906 Attenuates Neuropathic Pain in Rats by Regulating the TLR4/mTOR/ Akt Signaling Pathway.

This study determined the role of miR-1906 in neuropathic pain and proliferation in neuronal cells using a chronic constriction injury (CCI)-induced neuropathic pain (NP) rat model.

Learn More >

PIEZO1 is Selectively Expressed in Small Diameter Mouse DRG Neurons Distinct From Neurons Strongly Expressing TRPV1.

Using a high resolution hybridization technique we have measured , , and transcripts in mouse dorsal root ganglion (DRG) neurons. Consistent with previous studies, transcripts were highly expressed in DRG neurons of all sizes, including most notably the largest diameter neurons implicated in mediating touch and proprioception. In contrast, transcripts were selectively expressed in smaller DRG neurons, which are implicated in mediating nociception. Moreover, the small neurons expressing were mostly distinct from those neurons that strongly expressed , one of the channels implicated in heat-nociception. Interestingly, while and expressing neurons form essentially non-overlapping populations, showed co-expression in both populations. Using an functional test for the selective expression, we found that Yoda1, a PIEZO1-specific agonist, induced a mechanical hyperalgesia that displayed a significantly prolonged time course compared with that induced by capsaicin, a TRPV1-specific agonist. Taken together, our results indicate that PIEZO1 should be considered a potential candidate in forming the long sought channel mediating mechano-nociception.

Learn More >

Increased cerebral nuclear factor kappa B in a complex regional pain syndrome rat model: possible relationship between peripheral injury and the brain.

Complex regional pain syndrome (CRPS) is a rare but refractory pain disorder. Recent advanced information retrieval studies using text-mining and network analysis have suggested nuclear factor kappa B (NFκB) as a possible central mediator of CRPS. The brain is also known to play important roles in CRPS. The aim of this study was to evaluate changes in cerebral NFκB in rats with CRPS.

Learn More >

Repeated Administration of Norbinaltorphimine Produces Cumulative Kappa Opioid Receptor Inactivation.

Kappa receptor activation by dynorphins contributes to the anxiogenic, dysphoric, and cognitive disrupting effects of repeated stress, suggesting that kappa receptor antagonists might have therapeutic utility in the treatment of stress disorders. Three classes of kappa antagonists have been distinguished: non-selective, selective-competitive (readily reversible), and non-competitive (receptor-inactivating); however, which would be the most effective medication has not been established. To assess the utility of receptor inactivating antagonists, we tested the effects of a range of doses in both male and female mice. As previously established, the antinociceptive effects of the kappa agonist U50,488 were blocked by a single injection of the long-acting antagonist norbinatorphimine (norBNI) (10 mg/kg i.p.) in male mice. Ten to 20-fold lower doses of norBNI were ineffective after a single administration, but daily administration of 1.0 or 0.5 mg/kg for 5 days completely blocked U50,488 antinociceptive effects. Daily administration of 0.1 mg/kg norBNI produced slowly accumulating inhibition and completely blocked the antinociceptive effect of U50,488 after 20-30 days. Estrogen reduces female sensitivity to kappa opioid effects, but 30 days of 0.1 mg/kg norBNI completely blocked U50,488 analgesia in ovariectomized mice. Receptor inactivation in both male and female mice treated for 30 days with 0.1 mg/kg norBNI persisted for at least 1-week. These results suggest that receptor-inactivating kappa antagonists are effective in both males and females when given at 100-fold lower doses than typically administered in preclinical studies. The enhanced safety of this low-dosing protocol has important clinical implications if receptor inactivating kappa antagonists advance in medication development.

Learn More >

Nitroglycerine triggers triptan-responsive cranial allodynia and trigeminal neuronal hypersensitivity.

Cranial allodynia associated with spontaneous migraine is reported as either responsive to triptan treatment or to be predictive of lack of triptan efficacy. These conflicting results suggest that a single mechanism mediating the underlying neurophysiology of migraine symptoms is unlikely. The lack of a translational approach to study cranial allodynia reported in migraine patients is a limitation in dissecting potential mechanisms. Our objective was to study triptan-responsive cranial allodynia in migraine patients, and to develop an approach to studying its neural basis in the laboratory. Using nitroglycerine to trigger migraine attacks, we investigated whether cranial allodynia could be triggered experimentally, observing its response to treatment. Preclinically, we examined the cephalic response properties of central trigeminocervical neurons using extracellular recording techniques, determining changes to ongoing firing and somatosensory cranial-evoked sensitivity, in response to nitroglycerine followed by triptan treatment. Cranial allodynia was triggered alongside migraine-like headache in nearly half of subjects. Those who reported cranial allodynia accompanying their spontaneous migraine attacks were significantly more likely to have symptoms triggered than those that did not. Patients responded to treatment with aspirin or sumatriptan. Preclinically, nitroglycerine caused an increase in ongoing firing and hypersensitivity to intracranial-dural and extracranial-cutaneous (noxious and innocuous) somatosensory stimulation, reflecting signatures of central sensitization potentially mediating throbbing headache and cranial allodynia. These responses were aborted by a triptan. These data suggest that nitroglycerine can be used as an effective and reliable method to trigger cranial allodynia in subjects during evoked migraine, and the symptom is responsive to abortive triptan treatments. Preclinically, nitroglycerine activates the underlying neural mechanism of cephalic migraine symptoms, central sensitization, also predicting the clinical outcome to triptans. This supports a biological rationale that several mechanisms can mediate the underlying neurophysiology of migraine symptoms, with nitrergic-induced changes reflecting one that is relevant to spontaneous migraine in many migraineurs, whose symptoms of cranial allodynia are responsive to triptan treatment. This approach translates directly to responses in animals and is therefore a relevant platform to study migraine pathophysiology, and for use in migraine drug discovery.

Learn More >

Search