I am a
Home I AM A Search Login

Animal Studies

Share this

Genetic pathway analysis reveals a major role for extracellular matrix organization in inflammatory and neuropathic pain.

Chronic pain is a debilitating and poorly treated condition whose underlying mechanisms are poorly understood. Nerve injury and inflammation cause alterations in gene expression in tissues associated with pain processing, supporting molecular and cellular mechanisms that maintain painful states. However, it is not known whether transcriptome changes can be used to reconstruct a molecular pathophysiology of pain. In the current study, we identify molecular pathways contributing to chronic pain states through the analysis of global changes in the transcriptome of dorsal root ganglia, spinal cord, brain, and blood in mouse assays of nerve injury- and inflammation-induced pain. Comparative analyses of differentially expressed genes identified substantial similarities between 2 animal pain assays and with human low-back pain. Furthermore, the extracellular matrix (ECM) organization has been found the most commonly regulated pathway across all tested tissues in the 2 animal assays. Examination of human genome-wide association study data sets revealed an overrepresentation of differentially expressed genes within the ECM organization pathway in single nucleotide polymorphisms most strongly associated with human back pain. In summary, our comprehensive transcriptomics analysis in mouse and human identified ECM organization as a central molecular pathway in the development of chronic pain.

Learn More >

Oral thermosensing by murine trigeminal neurons: modulation by capsaicin, menthol, and mustard oil.

Orosensory thermal trigeminal afferent neurons respond to cool, warm, and nociceptive hot temperatures with the majority activated in the cool range. Many of these thermosensitive trigeminal orosensory afferent neurons also respond to capsaicin, menthol and/or mustard oil (allyl isothiocyanate, AITC) at concentrations found in foods and spices. There is significant but incomplete overlap between afferent trigeminal neurons that respond to heat and to the above chemesthetic compounds. Capsaicin sensitizes warm trigeminal thermoreceptors and orosensory nociceptors; menthol attenuates cool thermoresponses.

Learn More >

Elevation of Transient Receptor Potential Vanilloid 1 Function in the Lateral Habenula Mediates Aversive Behaviors in Alcohol-withdrawn Rats.

Chronic alcohol use and withdrawal leads to increased pain perception, anxiety, and depression. These aberrant behaviors are accompanied by increased excitatory glutamatergic transmission to, and activity of, the lateral habenula neurons.Vanilloid type 1, or TRPV1, channels are expressed in the habenula and they facilitate glutamatergic transmission. Whether TRPV1 channel plays a role in habenula hyperactivity is not clear.

Learn More >

The paracetamol metabolite NAPQI reduces excitability in first and second order neurons of the pain pathway through actions on KV7 channels.

(245/250): Paracetamol (acetaminophen, APAP) is one of the most frequently used analgesic agents worldwide. It is generally preferred over non-steroidal antiinflammatory drugs (NSAIDs) as it does not cause typical adverse effects resulting from the inhibition of cyclooxygenases, such as gastric ulcers. Nevertheless, inhibitory impact on these enzymes is claimed to contribute to paracetamols mechanisms of action which, therefore, remained controversial. Recently, the APAP metabolites N-arachidonoylaminophenol (AM404) and N-acetyl-p-benzoquinone imine (NAPQI) have been detected in the central nervous system after systemic APAP administration and were reported to mediate paracetamol effects. In contrast to NSAIDs which rather support seizure activity, paracetamol provides anticonvulsant actions, and this dampening of neuronal activity may also form the basis for analgesic effects.Here we reveal that the APAP metabolite NAPQI, but neither the parent compound nor the metabolite AM404, reduces membrane excitability in rat dorsal root ganglion (DRG) and spinal dorsal horn (SDH) neurons. The observed reduction of spike frequencies is accompanied by hyperpolarization in both sets of neurons. In parallel, NAPQI, but neither APAP nor AM404, increases currents through KV7 channels in DRG and SDH neurons, and the impact on neuronal excitability is absent if KV7 channels are blocked. Furthermore, NAPQI can revert the inhibitory action of the inflammatory mediator bradykinin on KV7 channels, but does not affect synaptic transmission between DRG and SDH neurons. These results show that the paracetamol metabolite NAPQI dampens excitability of first and second order neurons of the pain pathway through an action on KV7 channels.This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (CC BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Learn More >

Establishment and characterisation of a stavudine (d4T)-induced rat model of antiretroviral toxic neuropathy (ATN) using behavioural and pharmacological methods.

Human immuno-deficiency virus (HIV) associated sensory neuropathy (SN) is a frequent complication of HIV infection. It is extremely difficult to alleviate and hence the quality of life of affected individuals is severely and adversely impacted. Stavudine (d4T) is an antiretroviral drug that was widely used globally prior to 2010 and that is still used today in resource-limited settings. Its low cost and relatively good efficacy when included in antiretroviral dosing regimens means that there is a large population of patients with d4T-induced antiretroviral toxic neuropathy (ATN). As there are no FDA approved drugs for alleviating ATN, it is important to establish rodent models to probe the pathobiology and to identify potentially efficacious new drug treatments. In the model establishment phase, d4T administered intravenously at a cumulative dose of 375 mg/kg in male Wistar Han rats evoked temporal development of sustained mechanical allodynia in the hindpaws from day 10 to day 30 after initiation of d4T treatment. As this d4T dosing regimen was also well tolerated, it was used for ATN model induction for subsequent pharmacological profiling. Both gabapentin at 30-100 mg/kg and morphine at 0.3-2 mg/kg given subcutaneously produced dose-dependent relief of mechanical allodynia with estimated ED's of 19 mg/kg and 0.4 mg/kg, respectively. In contrast, intraperitoneal administration of meloxicam or amitriptyline up to 30 mg/kg and 7 mg/kg, respectively, lacked efficacy. Our rat model of ATN is suitable for investigation of the pathophysiology of d4T-induced SN as well as for profiling novel molecules from analgesic drug discovery programs.

Learn More >

The acyl-glucuronide metabolite of ibuprofen has analgesic and anti-inflammatory effects via the TRPA1 channel.

Ibuprofen is a widely used non-steroidal anti-inflammatory drug (NSAID) that exerts analgesic and anti-inflammatory actions. The transient receptor potential ankyrin 1 (TRPA1) channel, expressed primarily in nociceptors, mediates the action of proalgesic and inflammatory agents. Ibuprofen metabolism yields the reactive compound, ibuprofen-acyl glucuronide, which, like other TRPA1 ligands, covalently interacts with macromolecules. To explore whether ibuprofen-acyl glucuronide contributes to the ibuprofen analgesic and anti-inflammatory actions by targeting TRPA1, we used in vitro tools (TRPA1-expressing human and rodent cells) and in vivo mouse models of inflammatory pain. Ibuprofen-acyl glucuronide, but not ibuprofen, inhibited calcium responses evoked by reactive TRPA1 agonists, including allyl isothiocyanate (AITC), in cells expressing the recombinant and native human channel and in cultured rat primary sensory neurons. Responses by the non-reactive agonist, menthol, in a mutant human TRPA1 lacking key cysteine-lysine residues, were not affected. In addition, molecular modeling studies evaluating the covalent interaction of ibuprofen-acyl glucuronide with TRPA1 suggested the key cysteine residue C621 as a probable alkylation site for the ligand. Local administration of ibuprofen-acyl glucuronide, but not ibuprofen, in the mouse hind paw attenuated nociception by AITC and other TRPA1 agonists and the early nociceptive response (phase I) to formalin. Systemic ibuprofen-acyl glucuronide and ibuprofen, but not indomethacin, reduced phase I of the formalin response. Carrageenan-evoked allodynia in mice was reduced by local ibuprofen-acyl glucuronide, but not by ibuprofen, whereas both drugs attenuated PGE levels. Ibuprofen-acyl glucuronide, but not ibuprofen, inhibited the release of IL-8 evoked by AITC from cultured bronchial epithelial cells. The reactive ibuprofen metabolite selectively antagonizes TRPA1, suggesting that this novel action of ibuprofen-acyl glucuronide might contribute to the analgesic and anti-inflammatory activities of the parent drug.

Learn More >

Osteoarthritic pain model influences functional outcomes and spinal neuropeptidomics: A pilot study in female rats.

Osteoarthritis, the leading cause of chronic joint pain, is studied through different animal models, but none of them is ideal in terms of reliability and translational value. In this pilot study of female rats, 3 surgical models of osteoarthritic pain, destabilization of the medial meniscus (DMM), cranial cruciate ligament transection (CCLT), and the combination of both surgical models (COMBO) and 1 chemical model [intra-articular injection of monosodium iodoacetate (MIA)] were compared for their impact on functional pain outcomes [static weight-bearing (SWB) and punctate tactile paw withdrawal threshold (PWT)] and spinal neuropeptides [substance P (SP), calcitonin gene-related peptide (CGRP), bradykinin (BK), and somatostatin (SST)]. Six rats were assigned to each model group and a sham group. Both the chemical model (MIA) and surgical COMBO model induced functional alterations in SWB and PWT, with the changes being more persistent in the surgical combination group. Both models also produced an increase in levels of pro-nociceptive and anti-nociceptive neuropeptides at different timepoints. Pain comparison with the MIA model showed the advantage of a surgical model, especially the combination of the DMM and CCLT models, whereas each surgical model alone only led to temporary functional alterations and no change in neuropeptidomics.

Learn More >

Differential effect of LPS and paclitaxel on microglial functional phenotypes and circulating cytokines: the possible role of CX3CR1 and IL-4/10 in blocking persistent inflammation.

Neuroinflammation plays a role in cancer chemotherapy-induced chronic pain. Thus far, most studies have focused on neuroinflammation suppression. However, there are limited reports of which factor is involved in the transition from acute inflammation to chronic inflammation, resulting in neuroinflammation and chronic pain. Here, we compared the inflammatory reaction and pain response induced by LPS and paclitaxel. LPS (0.5 mg/kg) or paclitaxel (2 mg/kg/day for 5 days) was administered intraperitoneally to mice, and mechanical allodynia was examined by von Frey test. LPS induced transient mechanical allodynia, whereas paclitaxel induced persistent mechanical allodynia. The CD86/CX3CR1 ratio remained unchanged due to CX3CR1 elevation following LPS injection, whereas the ratio was increased on day 1 after paclitaxel injection. LPS also increased CD45, CCL2, and CCL5 mRNA in the spinal cord and circulating pro- and anti-inflammatory cytokines 1 day after injection; however, the pattern was not consistent. Paclitaxel gradually increased inflammatory cytokines in the spinal cord. CX3CR1 might be involved in blocking the transition from acute pain to persistent pain in the LPS group. In addition, serum IL-4 and IL-10 elevation in the LPS group may be associated with chronic pain prevention. Therefore, targeting CX3CR1, IL-4, and IL-10 might be an alternative therapeutic strategy.

Learn More >

Cav3.2 calcium channel inhibition: a new target for colonic hypersensitivity associated with low-grade inflammation.

Abdominal pain associated with low-grade inflammation is frequently encountered in irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD) during the remission phase. Current treatments are generally weakly effective. Therefore, new therapeutic approaches are needed. The role of Cav3.2 voltage-dependent calcium channels, which have been shown to be important in other chronic pain contexts, was investigated in a murine model of colonic hypersensitivity (CHS) associated with low-grade inflammation.

Learn More >

Mechanism of the JAK2/STAT3-CAV-1-NR2B signaling pathway in painful diabetic neuropathy.

The aim of the present study was to further elucidate the role of JAK2/STAT3-CAV-1-NR2B on painful diabetic neuropathy.

Learn More >

Search