I am a
Home I AM A Search Login

Animal Studies

Share this

Profound analgesia is associated with a truncated peptide resulting from tissue specific alternative splicing of DRG CA8-204 regulated by an exon-level cis-eQTL.

Carbonic anhydrase-8 (CA8) is an intracellular protein that functions as an allosteric inhibitor of inositol trisphosphate receptor-1 (ITPR1) critical to intracellular Ca++ release, synaptic functions and neuronal excitability. We showed previously that murine nociception and analgesic responses are regulated by the expression of this gene in dorsal root ganglion (DRG) associated with a cis-eQTL. In this report, we identify an exon-level cis-eQTL (rs6471859) that regulates human DRG CA8 alternative splicing, producing a truncated 1,697bp transcript (e.g., CA8-204). Our functional genomic studies show the "G" allele at rs6471859 produces a cryptic 3'UTR splice site regulating expression of CA8-204. We developed constructs to study the expression and function of the naturally occurring CA8-204G transcript (G allele at rs6471859), CA8-204C (C allele at rs6471859 reversion mutation) and CA8-201 (full length transcript). CA8-204G transcript expression occurred predominantly in non-neuronal cells (HEK293), while CA8-204C expression was restricted to neuronal derived cells (NBL) in vitro. CA8-204G produced a stable truncated transcript in HEK293 cells that was barely detectable in NBL cells. We also show CA8-204 produces a stable peptide that inhibits pITPR1 and Ca++ release in HEK293 cells. These results imply homozygous G/G individuals at rs6471859, which are common in the general population, produce exclusively CA8-204G that is barely detectable in neuronal cells. CA8 null mutations that greatly impact neuronal functions are associated with severe forms of spinal cerebellar ataxia, and our data suggest G/G homozygotes should display a similar phenotype. To address this question, we show in vivo using AAV8-FLAG-CA8-204G and AAV8-V5-CA8-201 gene transfer delivered via intra-neural sciatic nerve injection (SN), that these viral constructs are able to transduce DRG cells and produce similar analgesic and anti-hyperalgesic responses to inflammatory pain. Immunohistochemistry (IHC) examinations of DRG tissues further show CA8-204G peptide is expressed in advillin expressing neuronal cells, but to a lesser extent compared to glial cells. These findings explain why G/G homozygotes that exclusively produce this truncated functional peptide in DRG evade a severe phenotype. These genomic studies significantly advance the literature regarding structure-function studies on CA8-ITPR1 critical to calcium signaling pathways, synaptic functioning, neuronal excitability and analgesic responses.

Learn More >

α5GABAA receptors play a pronociceptive role and avoid the rate-dependent depression of the Hoffmann reflex in diabetic neuropathic pain and reduce primary afferent excitability.

Diabetic neuropathy is an incapacitating complication in diabetic patients. The cellular and molecular mechanisms involved in this pathology are poorly understood. Previous studies have suggested that the loss of spinal GABAergic inhibition participate in painful diabetic neuropathy. However, the role of extrasynaptic α5 subunit-containing GABAA (α5GABAA) receptors in this process is not known. The purpose of this study was to investigate the role of α5GABAA receptors in diabetes-induced tactile allodynia, loss of rate-dependent depression (RDD) of the Hoffmann reflex (HR), and modulation of primary afferent excitability. Intraperitoneal administration of streptozotocin induced tactile allodynia. Intrathecal injection of α5GABAA receptor inverse agonist, L-655,708, produced tactile allodynia in naive rats, whereas it reduced allodynia in diabetic rats. In healthy rats, electrical stimulation of the tibial nerve at 5 Hz induced RDD of the HR, although intrathecal treatment with L-655,708 (15 nmol) abolished RDD of the HR. Streptozotocin induced the loss of RDD of the HR, while intrathecal L-655,708 (15 nmol) restored RDD of the HR. L-655,708 (15 nmol) increased tonic excitability of the primary afferents without affecting the phasic excitability produced by the primary afferent depolarization. α5GABAA receptors were immunolocalized in superficial laminae of the dorsal horn and L4 to L6 dorsal root ganglion. Streptozotocin increased mean fluorescence intensity and percentage of neurons expressing α5GABAA receptors in dorsal horn and L4 to L6 dorsal root ganglia in 10-week diabetic rats. Our results suggest that spinal α5GABAA receptors modulate the HR, play an antinociceptive and pronociceptive role in healthy and diabetic rats, respectively, and are tonically active in primary afferents.

Learn More >

Phospho-substrate profiling of Epac-dependent protein kinase C activity.

Exchange protein directly activated by cAMP (Epac) and protein kinase A are effectors for cAMP with distinct actions and regulatory mechanisms. Epac is a Rap guanine nucleotide exchange factor that activates Rap1; protein kinase C (PKC) is a major downstream target of Epac-Rap1 signaling that has been implicated in a variety of pathophysiological processes, including cardiac hypertrophy, cancer, and nociceptor sensitization leading to chronic pain. Despite the implication of both Epac and PKC in these processes, few downstream targets of Epac-PKC signaling have been identified. This study characterized the regulation of PKC activity downstream of Epac activation. Using an antibody that recognizes phospho-serine residues within the consensus sequence phosphorylated by PKC, we analyzed the 1-dimensional banding profile of PKC substrate protein phosphorylation from the Neuro2A mouse neuroblastoma cell line. Activation of Epac either indirectly by prostaglandin PGE2, or directly by 8-pCPT-2-O-Me-cAMP-AM (8pCpt), produced distinct PKC phospho-substrate protein bands that were suppressed by co-administration of the Epac inhibitor ESI09. Different PKC isoforms contributed to the induction of individual phospho-substrate bands, as determined using isoform-selective PKC inhibitors. Moreover, the banding profile after Epac activation was altered by disruption of the cytoskeleton, suggesting that the orchestration of Epac-dependent PKC signaling is regulated in part by interactions with the cytoskeleton. The approach described here provides an effective means to characterize Epac-dependent PKC activity.

Learn More >

Neuregulin-1-ErbB signaling promotes microglia activation contributing to mechanical allodynia of cyclophosphamide-induced cystitis.

Central sensitization playsimportant roles in cyclophosphamide (CYP)-induced cystitis. In addition, as a visceral pain, CYP-induced chronic pain shares common pathophysiological mechanisms with neuropathic pain. Previous studies demonstrated that neuregulin-1 (Nrg1)-ErbB signaling contributes to neuropathic pain, but whether and how this signaling influences mechanical allodynia in CYP-induced cystitis is unclear. This study aimed to determine whether and how Nrg1-ErbB signaling modulates mechanical allodynia in a CYP-induced cystitis rat model.

Learn More >

Neutrophils promote CXCR3-dependent itch in the development of atopic dermatitis.

Learn More >

Molecular Determinants of μ-Conotoxin KIIIA interaction with the Voltage-Gated Sodium Channel Nav1.7.

Learn More >

VGLUT2/ Cdk5/p25 Signaling Pathway Contributed to Inflammatory Pain By CFA.

Learn More >

Dural calcitonin gene-related peptide produces female-specific responses in rodent migraine models.

Migraine is the second leading cause for disability worldwide and the most common neurological disorder. It is also three times more common in women; reasons for this sex difference are not known. Using preclinical behavioral models of migraine, we show that application of CGRP to the rat dura mater produces cutaneous periorbital hypersensitivity. Surprisingly, this response was observed only in females; dural CGRP at doses from 1 pg to 3.8 μg produce no responses in males. In females, dural CGRP causes priming to a pH 7.0 solution after animals recover from the initial CGRP-induced allodynia. Dural application of interleukin-6 (IL-6) causes acute responses in males and females but only causes priming to subthreshold dural CGRP (0.1 pg) in females. Intracisternal application of BDNF also causes similar acute hypersensitivity responses in males and females but only priming to subthreshold dural CGRP (0.1 pg) in females. Females were additionally primed to a subthreshold dose of the NO-donor sodium nitroprusside (0.1 mg/kg) following dural CGRP. Finally, the sexually-dimorphic responses to dural CGRP were not specific to rats as similar female-specific hypersensitivity responses were seen in mice, where increased grimace responses were also observed. These data are the first to demonstrate that CGRP induced headache-like behavioral responses at doses up to 3.8 μg are female specific both acutely and following central and peripheral priming. These data further implicate dural CGRP signaling in the pathophysiology of migraine and propose a model where dural CGRP-based mechanisms contribute to the sexual disparity of this female biased disorder.Calcitonin gene-related peptide has long been implicated in the pathophysiology of migraine and CGRP-based therapeutics are efficacious for the treatment of migraine in humans. However, the location of action for CGRP in migraine remains unclear. We show here that application of CGRP to the cranial meninges causes behavioral responses consistent with headache in preclinical rodent models. Surprisingly however, these responses are only observed in females. Acute responses to meningeal CGRP are female-specific and sensitization to CGRP after two-distinct stimuli are also female-specific. These data implicate the dura mater as a primary location of action for CGRP in migraine and suggest that female-specific mechanisms downstream of CGRP receptor activation contribute to the higher prevalence of migraine in women.

Learn More >

Opioid-galanin receptor heteromers differentiate the dopaminergic effects of morphine and methadone.

As the opioid addiction crisis reaches epidemic levels, the identification of opioid analgesics that lack abuse potential may provide a path to safer treatment of chronic pain. Preclinical studies have demonstrated that galanin affects physical dependence and rewarding actions associated with morphine. In the brain and periphery, galanin and opioids signal through their respective GPCRs, GalR1-3 and the μ-opioid receptor (MOR). In this issue of the JCI, Cai and collaborators reveal that heteromers between GalR1 and MOR in the rat ventral tegmental area attenuate the potency of methadone, but not other opioids, in stimulating the dopamine release that produces euphoria. These studies help us understand why some synthetic opioids, such as methadone, do not trigger the release of dopamine in the mesolimbic system but still possess strong analgesic properties.

Learn More >

A dual role for peripheral GDNF signaling in nociception and cardiovascular reflexes.

Learn More >

Search