I am a
Home I AM A Search Login

Animal Studies

Share this

Protein kinase D and Gβγ mediate sustained nociceptive signaling by biased agonists of protease-activated receptor-2.

Proteases sustain hyperexcitability and pain by cleaving protease-activated receptor-2 (PAR2) on nociceptors through distinct mechanisms. Whereas trypsin induces PAR2 coupling to Gαq, Gαs, and β-arrestins, cathepsin-S (CS) and neutrophil elastase (NE) cleave PAR2 at distinct sites and activate it by biased mechanisms that induce coupling to Gαs, but not to Gαq or β-arrestins. Since proteases activate PAR2 by irreversible cleavage, and activated PAR2 is degraded in lysosomes, sustained extracellular protease-mediated signaling requires mobilization of intact PAR2 from the Golgi apparatus or de novo synthesis of new receptors by incompletely understood mechanisms. We found here that trypsin, CS, and NE stimulate PAR2-dependent activation of protein kinase D (PKD) in the Golgi of HEK293 cells, in which PKD regulates protein trafficking. The proteases stimulated translocation of the PKD activator Gβγ to the Golgi, coinciding with PAR2 mobilization from the Golgi. Proteases also induced translocation of a photo-converted PAR2-Kaede fusion protein from the Golgi to the plasma membrane of KNRK cells. After incubation of HEK293 cells and dorsal root ganglia neurons with CS, NE, or trypsin, PAR2 responsiveness initially declined, consistent with PAR2 cleavage and desensitization, and then gradually recovered. Inhibitors of PKD, Gβγ and protein translation inhibited recovery of PAR2 responsiveness. PKD and Gβγ inhibitors also attenuated protease-evoked mechanical allodynia in mice. We conclude that proteases that activate PAR2 by canonical and biased mechanisms stimulate PKD in the Golgi; PAR2 mobilization and de novo synthesis repopulate the cell surface with intact receptors and sustain nociceptive signaling by extracellular proteases.

Learn More >

A synthetic peptide disturbing GluN2A/SHP1 interaction in dorsal root ganglion attenuated pathological pain.

Src Homology 2 domain-containing protein tyrosine phosphatase 1 (SHP1) interacts specifically with GluN2A subunit of N-methyl-D-aspartate (NMDA) subtype of glutamate receptors in spinal cord dorsal horn. This molecular interaction is involved in the development of GluN2A-dependent spinal sensitization of nociceptive behaviors. Intrathecal application of a GluN2A-derived polypeptide (short for pep-GluN2A) has been shown to disturb spinal GluN2A/SHP1 interaction and inhibit inflammatory pain. Here we found that SHP1 was also located at dorsal root ganglion (DRG) neurons and formed complexes with GluN2A subunit. Peripheral inflammation activated SHP1 in DRG neurons, which promoted GluN2A tyrosine phosphorylation. The SHP1 binding to GluN2A facilitated the glutamate release from primary afferent fibers and exaggerated nociceptive synaptic transmission onto postsynaptic spinal cord neurons. Our data showed that intradermal application of pep-GluN2A disrupted GluN2A/SHP1 interaction in DRG neurons, attenuated the ability of GluN2A subunit-containing NMDA receptors to regulate the presynaptic glutamate release and more importantly, alleviated the pain hypersensitivity caused by carrageenan, complete Freund's adjuvant and formalin. The neuropathic pain induced by spared nerve injury was also ameliorated by intradermal pep-GluN2A application. These data suggested that disruption of GluN2A/SHP1 interaction in DRG neurons generated an effective analgesic action against pathological pain.

Learn More >

Comparison of the antinociceptive profiles of morphine and oxycodone in two models of inflammatory and osteoarthritic pain in rat.

Oxycodone and morphine are two opioid drugs commonly used for the treatment of moderate to severe pain. However, their use in the management of noncancer pain remains a controversial issue and, in this respect, the evidence on their effectiveness and safety, particularly in osteoarthritis, is being questioned. In order to analyse their analgesic profile, two different pain models in rats were used: the formalin-induced inflammatory pain and the monosodium iodoacetate (MIA)-induced knee osteoarthritic pain. Drugs were administered systemically (i.p.) and their antinociceptive effect and potency were assessed. In the formalin test, both morphine and oxycodone produced a dose-dependent antinociceptive effect, but oxycodone outdid morphine in terms of effectiveness and potency (nearly two times) in the early (acute nociceptive) as in the late phase (inflammatory). In the osteoarthritis model, both drugs reduced movement-evoked pain (knee-bend test), mechanical allodynia (von Frey test) and heat hyperalgesia (Plantar test). Pretreatment with naloxone and naloxone methiodide reduced morphine and oxycodone effects. Peripheral mu-opioid receptors play a crucial role in the antinociceptive effect of both drugs on movement-evoked pain and heat hyperalgesia, but not on tactile allodynia. The main finding of our study is that oxycodone has a better antinociceptive profile in the inflammatory and osteoarthritic pain, being more effective than morphine at 14 days post-MIA injection (phase with neuropathic pain); it overcame the morphine effect by improving the movement-induced pain, tactile allodynia and heat hyperalgesia. Therefore, oxycodone could be an interesting option to treat patients suffering from knee osteoarthritis when opioids are required.

Learn More >

How Gastrin-Releasing Peptide Opens the Spinal Gate for Itch.

Spinal transmission of pruritoceptive (itch) signals requires transneuronal signaling by gastrin-releasing peptide (GRP) produced by a subpopulation of dorsal horn excitatory interneurons. These neurons also express the glutamatergic marker vGluT2, raising the question of why glutamate alone is insufficient for spinal itch relay. Using optogenetics together with slice electrophysiology and mouse behavior, we demonstrate that baseline synaptic coupling between GRP and GRP receptor (GRPR) neurons is too weak for suprathreshold excitation. Only when we mimicked the endogenous firing of GRP neurons and stimulated them repetitively to fire bursts of action potentials did GRPR neurons depolarize progressively and become excitable by GRP neurons. GRPR but not glutamate receptor antagonism prevented this action. Provoking itch-like behavior by optogenetic activation of spinal GRP neurons required similar stimulation paradigms. These results establish a spinal gating mechanism for itch that requires sustained repetitive activity of presynaptic GRP neurons and postsynaptic GRP signaling to drive GRPR neuron output.

Learn More >

Carboplatin Enhances the Activity of Human Transient Receptor Potential Ankyrin 1 through the Cyclic AMP-Protein Kinase A-A-Kinase Anchoring Protein (AKAP) Pathways.

Carboplatin, an anticancer drug, often causes chemotherapy-induced peripheral neuropathy (PN). Transient receptor potential ankyrin 1 (TRPA1), a non-selective cation channel, is a polymodal nociceptor expressed in sensory neurons. TRPA1 is not only involved in pain transmission, but also in allodynia or hyperalgesia development. However, the effects of TRPA1 on carboplatin-induced PN is unclear. We revealed that carboplatin induced mechanical allodynia and cold hyperalgesia, and the pains observed in carboplatin-induced PN models were significantly suppressed by the TRPA1 antagonist HC-030031 without a change in the level of TRPA1 protein. In cells expressing human TRPA, carboplatin had no effects on changes in intracellular Ca concentration ([Ca]); however, carboplatin pretreatment enhanced the increase in [Ca] induced by the TRPA1 agonist, allyl isothiocyanate (AITC). These effects were suppressed by an inhibitor of protein kinase A (PKA). The PKA activator forskolin enhanced AITC-induced increase in [Ca] and carboplatin itself increased intracellular cyclic adenosine monophosphate (cAMP) levels. Moreover, inhibition of A-kinase anchoring protein (AKAP) significantly decreased the carboplatin-induced enhancement of [Ca] induced by AITC and improved carboplatin-induced mechanical allodynia and cold hyperalgesia. These results suggested that carboplatin induced mechanical allodynia and cold hyperalgesia by increasing sensitivity to TRPA1 via the cAMP-PKA-AKAP pathway.

Learn More >

Botulinum toxin type A reduces the expression of transient receptor potential melastatin 3 and transient receptor potential vanilloid type 4 in the trigeminal subnucleus caudalis of a rat model of trigeminal neuralgia.

This study was designed to investigate the expression of transient receptor potential melastatin 3 (TRPM3) and transient receptor potential vanilloid type 4 (TRPV4) in the trigeminal spinal subnucleus caudalis of a rat model of trigeminal neuralgia (TN). The influence of botulinum toxin type A (BTX-A) on the expression of these channels was also explored. In this study, a model was established involving chronic constriction injury to the infraorbital nerve (ION-CCI), inducing TN. To explore the effects of BTX-A and whether it was dose related, rats were divided randomly into four groups: a control group, an ION-CCI group, a 3 U group, and a 10 U group (which received 3 and 10 U/kg BTX-A injections, respectively). Von Frey hairs were used to determine the pain threshold of the rats. The expression of TRPM3 and TRPV4 in the trigeminal spinal subnucleus caudalis was detected using western blots and immunohistochemistry. The pain thresholds of rats decreased to a minimum 14 days after ION-CCI. Compared with the ION-CCI group, the pain thresholds of the 3 and 10 U groups were significantly higher 4 days after the subcutaneous injection of BTX-A (P<0.05). The expression of TRPM3 and TRPV4 in the ION-CCI group was significantly higher than that in the control group (P<0.05). TRPM3 and TRPV4 expression in the 3 and 10 U groups was significantly lower than that in the ION-CCI group (P<0.05). In conclusion, overexpression of TRPM3 and TRPV4 can jointly mediate the occurrence of mechanical hyperalgesia in TN. The analgesic effects of BTX-A may be related to the inhibition of TRPM3 and TRPV4 expression.

Learn More >

Divergent behavioral responses in protracted opioid withdrawal in male and female C57BL/6J mice.

Learn More >

Mechanism of μ-Opioid Receptor-Magnesium Interaction and Positive Allosteric Modulation.

Learn More >

Morphine tolerance is attenuated in germfree mice and reversed by probiotics, implicating the role of gut microbiome.

Prolonged exposure to opioids results in analgesic tolerance, drug overdose, and death. The mechanism underlying morphine analgesic tolerance still remains unresolved. We show that morphine analgesic tolerance was significantly attenuated in germfree (GF) and in pan-antibiotic-treated mice. Reconstitution of GF mice with naïve fecal microbiota reinstated morphine analgesic tolerance. We further demonstrated that tolerance was associated with microbial dysbiosis with selective depletion in and Probiotics, enriched with these bacterial communities, attenuated analgesic tolerance in morphine-treated mice. These results suggest that probiotic therapy during morphine administration may be a promising, safe, and inexpensive treatment to prolong morphine's efficacy and attenuate analgesic tolerance. We hypothesize a vicious cycle of chronic morphine tolerance: morphine-induced gut dysbiosis leads to gut barrier disruption and bacterial translocation, initiating local gut inflammation through TLR2/4 activation, resulting in the activation of proinflammatory cytokines, which drives morphine tolerance.

Learn More >

Electroacupuncture Stimulation Alleviates CFA-Induced Inflammatory Pain Via Suppressing P2X3 Expression.

Chronic inflammatory pain is one of the most common complaints that seriously affects patients' quality of life. Previous studies have demonstrated that the analgesic effect of electroacupuncture (EA) stimulation on inflammatory pain is related to its frequency. In this study, we focused on whether the analgesic effects of EA are related to the period of stimulation. Purinergic receptor P2X3 (P2X3) is involved in the pathological process underlying chronic inflammatory pain and neuropathic pain. We hypothesized that 100 Hz EA stimulation alleviated Freund's complete adjuvant (CFA) induced inflammatory pain via regulating P2X3 expression in the dorsal root ganglion (DRG) and/or spinal cord dorsal horn (SCDH). We also assumed that the analgesic effect of EA might be related to the period of stimulation. We found that both short-term (three day) and long-term (14 day) 100 Hz EA stimulation effectively increased the paw withdrawal threshold (PWT) and reversed the elevation of P2X3 in the DRG and SCDH of CFA rats. However, the analgesic effects of 100 Hz EA were not dependent on the period of stimulation. Moreover, P2X3 inhibition or activation may contribute to or attenuate the analgesic effects of 100 Hz EA on CFA-induced inflammatory pain. This result indicated that EA reduced pain hypersensitivity through P2X3 modulation.

Learn More >

Search