I am a
Home I AM A Search Login

Animal Studies

Share this

A novel G protein-biased agonist at the δ opioid receptor with analgesic efficacy in models of chronic pain.

Agonists at the δ opioid receptor are known to be potent anti-hyperalgesics in chronic pain models and to be effective in models of anxiety and depression. However, some δ opioid agonists have pro-convulsant properties whilst tolerance to the therapeutic effects can develop. Previous evidence indicates that different agonists acting at the δ opioid receptor differentially engage signalling and regulatory pathways with significant effects on behavioural outcomes. As such, interest is now growing in the development of biased agonists as a potential means to target specific signalling pathways and potentially improve the therapeutic profile of δ opioid agonists. Here we report on PN6047 (3-[[4-(dimethylcarbamoyl)phenyl]-[1-thiazol-5-ylmethyl)-4-piperidylidene]methyl]benzamide) a novel G protein-biased and selective δ opioid agonist. In cell based assays PN6047 fully engages G protein signalling but is a partial agonist in both the arrestin recruitment and internalisation assays. PN6047 is effective in rodent models of chronic pain but shows no detectable analgesic tolerance following prolonged treatment. In addition, PN6047 exhibited antidepressant-like activity in the forced swim test and importantly, the drug had no effect on chemically induced seizures. PN6047 did not exhibit reward-like properties in the conditioned place preference test or induce respiratory depression. Thus, δ opioid ligands with limited arrestin signalling such as PN6047 may be therapeutically beneficial in the treatment of chronic pain states. SIGNIFICANCE STATEMENT: PN6047 is a selective, G protein-biased δ opioid agonist with efficacy in preclinical models of chronic pain. No analgesic tolerance was observed after prolonged treatment and PN6047 does not display pro-convulsant activity or other opioid-mediated adverse effects. Our data suggest that δ opioid ligands with limited arrestin signalling will be beneficial in the treatment of chronic pain.

Learn More >

Sensory neuron-derived Na1.7 contributes to dorsal horn neuron excitability.

Expression of the voltage-gated sodium channel Na1.7 in sensory neurons is required for pain sensation. We examined the role of Na1.7 in the dorsal horn of the spinal cord using an epitope-tagged Na1.7 knock-in mouse. Immuno-electron microscopy showed the presence of Na1.7 in dendrites of superficial dorsal horn neurons, despite the absence of mRNA. Rhizotomy of L5 afferent nerves lowered the levels of Na1.7 in the dorsal horn. Peripheral nervous system-specific Na1.7 null mutant mice showed central deficits, with lamina II dorsal horn tonic firing neurons more than halved and single spiking neurons more than doubled. Na1.7 blocker PF05089771 diminished excitability in dorsal horn neurons but had no effect on Na1.7 null mutant mice. These data demonstrate an unsuspected functional role of primary afferent neuron-generated Na1.7 in dorsal horn neurons and an expression pattern that would not be predicted by transcriptomic analysis.

Learn More >

Soluble epoxide hydrolase inhibitor mediated analgesia lacks tolerance in rat models.

Effectively treating chronic pain remains a therapeutic challenge in the clinic. Recent evidence has shown the inhibition of the soluble epoxide hydrolase (sEH) to be an effective strategy to limit chronic pain in preclinical models, horses and companion animals. Determining the safety ofsEH inhibition in addition to this demonstrated efficacy is a critical step to the further development ofsEH inhibitors (sEHI) as analgesics. Here we describe a comparison of thesEHI TPPU with other first in class analgesics for human chronic pain. We assess the development of tolerance to the analgesia mediated by TPPU with extended use. We also assess for CNS effects by measuring changes in motor control and functioning. ThesEHI are multimodal analgesics that have demonstrated potent efficacy against chronic pain. They have previously been tested and show no reward potential using operant methods. The results of the current experiments show that they lack motor function effects and also lack the development of tolerance with extended dosing.

Learn More >

A somatosensory cortex input to the caudal dorsolateral striatum controls comorbid anxiety in persistent pain.

Chronic pain and anxiety symptoms are frequently encountered clinically, but the neural circuit mechanisms underlying the comorbid anxiety symptoms in pain (CASP) in context of chronic pain remain unclear. Using viral neuronal tracing in mice, we identified a previously unknown pathway whereby glutamatergic neurons from layer 5 of the hindlimb primary somatosensory cortex (S1) (Glu), a well-known brain region involved in pain processing, project to GABAergic neurons in the caudal dorsolateral striatum (GABA). In a persistent inflammatory pain model induced by complete Freund's adjuvant injection, enhanced excitation of the Glu→GABA pathway was found in mice exhibiting CASP. Reversing this pathway using chemogenetic or optogenetic approaches alleviated CASP. In addition, the optical activation of Glu terminals in the cDLS produced anxiety-like behaviors in naive mice. Overall, the current study demonstrates the putative importance of a novel Glu→GABA pathway in controlling at least some aspects of CASP.

Learn More >

Janus kinase inhibitor delgocitinib suppresses pruritus and nerve elongation in an atopic dermatitis murine model.

Learn More >

High cortical delta power correlates with aggravated allodynia by activating anterior cingulate cortex GABAergic neurons in neuropathic pain mice.

Patients with chronic pain often report being sensitive to pain at night before falling asleep, a time when the synchronization of cortical activity is initiated. However, how cortical activity relates to pain sensitivity is still unclear. Since sleep is characterized by enhanced cortical delta power, we hypothesized that enhanced cortical delta power may be an indicator of intensified pain. To test this hypothesis, we used pain thresholds tests, EEG/electromyogram recordings, c-Fos staining and chemogenetic and pharmacological techniques in mice. We found that sleep deprivation or pharmacologic enhancement of EEG delta power by reserpine and scopolamine dramatically decreased mechanical pain thresholds, but not thermal withdrawal latency, in a partial sciatic-nerve ligation model of neuropathic pain mice. On the contrary, suppression of EEG delta power using a wake-promoting agent modafinil significantly attenuated mechanical allodynia. Moreover, when EEG delta power was enhanced, c-Fos expression decreased in most regions of the cortex, except the anterior cingulate cortex (ACC), where c-Fos was increased in the somatostatin and parvalbumin positive GABAergic neurons. Chemogenetic activation of GABAergic neurons in ACC enhanced EEG delta power and lowered mechanical pain thresholds simultaneously in naïve mice. However, chemogenetic inhibition of ACC GABAergic neurons could not block mechanical allodynia. These results provided compelling evidence that elevated EEG delta power is accompanied with aggravated neuropathic pain, whereas decreased delta power attenuated it, suggesting that enhanced delta power can be a specific marker of rising chronic neuropathic pain and that wake-promoting compounds could be used as analgesics in the clinic.

Learn More >

FAAH inhibition as a preventive treatment for migraine: A pre-clinical study.

Fatty-acid amide hydrolase (FAAH) is an intracellular serine hydrolase that catalyzes the cleavage of endogenous fatty-acid amides, including the endocannabinoid anandamide (AEA). We previously reported that the peripherally restricted FAAH inhibitor URB937, which selectively increases AEA levels outside the central nervous system, reduces hyperalgesia and c-Fos expression in the trigeminal nucleus caudalis (TNC) and the locus coeruleus in an animal model of migraine based on nitroglycerin (NTG) administration.

Learn More >

Methylphenidate and Morphine Combination Therapy in a Rat Model of Chronic Pain.

The incremental dose of opioids used in chronic pain management often leads to a reduced opioid analgesic effect, opioid misuse, and addiction. Central dopamine (DA) dysfunction contributes to the chronicity of pain and a decreased opioid analgesic effect. Methylphenidate (MPH/Ritalin) enhances central DA function by inhibiting DA reuptake. In this study, we used a rat model of chronic pain to examine whether combination of MPH with morphine (MOR) would improve the MOR analgesic effect under a chronic pain condition.

Learn More >

Reversal of peripheral nerve injury-induced neuropathic pain and cognitive dysfunction via genetic and tomivosertib targeting of MNK.

Neuropathic pain caused by nerve injury presents with severe spontaneous pain and a variety of comorbidities, including deficits in higher executive functions. None of these clinical problems are adequately treated with current analgesics. Targeting of the mitogen-activated protein kinase-interacting kinase (MNK1/2) and its phosphorylation target, the mRNA cap binding protein eIF4E, attenuates many types of nociceptive plasticity induced by inflammatory mediators and chemotherapeutic drugs but inhibiting this pathway does not alter nerve injury-induced mechanical allodynia. We used genetic manipulations and pharmacology to inhibit MNK-eIF4E activity in animals with spared nerve injury, a model of peripheral nerve injury (PNI)-induced neuropathic pain. We assessed the presence of spontaneous pain using conditioned place preference. We also tested performance in a medial prefrontal cortex (mPFC)-dependent rule-shifting task. WT neuropathic animals showed signs of spontaneous pain and were significantly impaired in the rule-shifting task while genetic and pharmacological inhibition of the MNK-eIF4E signaling axis protected against and reversed spontaneous pain and PNI-mediated cognitive impairment. Additionally, pharmacological and genetic inhibition of MNK-eIF4E signaling completely blocked and reversed maladaptive shortening in the length of axon initial segments (AIS) in the mPFC of PNI mice. Surprisingly, these striking positive outcomes on neuropathic pain occurred in the absence of any effect on mechanical allodynia, a standard test for neuropathic pain efficacy. Our results illustrate new testing paradigms for determining preclinical neuropathic pain efficacy and point to the MNK inhibitor tomivosertib (eFT508) as an important drug candidate for neuropathic pain treatment.

Learn More >

Characterization of the sensory, affective, cognitive, biochemical, and neuronal alterations in a modified chronic constriction injury model of neuropathic pain in mice.

The chronic constriction injury (CCI) of the sciatic nerve is a nerve injury-based model of neuropathic pain (NP). Comorbidities of NP such as depression, anxiety, and cognitive deficits are associated with a functional reorganization of the medial prefrontal cortex (mPFC). Here, we have employed an adapted model of CCI by placing one single loose ligature around the sciatic nerve in mice for investigating the alterations in sensory, motor, affective, and cognitive behavior and in electrophysiological and biochemical properties in the prelimbic division (PrL) of the mPFC. Our adapted model of CCI induced mechanical allodynia, motor, and cognitive impairments and anxiety- and depression-like behavior. In the PrL division of mPFC was observed an increase in GABA and a decrease in d-aspartate levels. Moreover an increase in the activity of neurons responding to mechanical stimulation with an excitation, mPFC (+), and a decrease in those responding with an inhibition, mPFC (-), was found. Altogether these findings demonstrate that a single ligature around the sciatic nerve was able to induce sensory, affective, cognitive, biochemical, and functional alterations already observed in other neuropathic pain models and it may be an appropriate and easily reproducible model for studying neuropathic pain mechanisms and treatments.

Learn More >

Search