I am a
Home I AM A Search Login

Animal Studies

Share this

Mitochondrial bioenergetics, glial reactivity and pain-related behavior can be restored by dichloroacetate treatment in rodent pain models.

Glial reactivity in the dorsal horn of the spinal cord is a hallmark in most chronic pain conditions. Neuroinflammation-associated reactive glia, in particular astrocytes, have been shown to exhibit reduced mitochondrial respiratory function.Here we studied the mitochondrial function at the lumbar spinal cord tissue from Complete Freund's adjuvant (CFA)-induced inflammatory pain rat and chronic constriction injury (CCI) mouse models by high resolution respirometry (HRR). A significant decrease in mitochondrial bioenergetic parameters at the injury-related spinal cord level coincided with highest astrocytosis. Oral administration of dichloroacetate (DCA) significantly increased mitochondrial respiratory function by inhibiting pyruvate dehydrogenase kinase (PDK) and decreased GFAP and Iba-1 immunoreactivity in spinal cord. Importantly, DCA treatment significantly reduced the ipsilateral pain-related behavior without affecting contralateral sensitivity in both pain models. Our results indicate that mitochondrial metabolic modulation with DCA may offer an alternative therapeutic strategy to alleviate chronic and persistent inflammatory pain.

Learn More >

Increased immediate early gene activation in the basolateral amygdala following persistent peripheral inflammation.

Chronic pain results in a variety of neural adaptations, many of which are maladaptive and result in hypersensitivity to pain. In humans, this hypersensitivity can be debilitating and treatment options are limited. Fortunately, there are numerous animal models that mimic clinical populations and have the potential to aid in the evaluation of underlying mechanisms and ultimately the development of better treatments. One of these is the complete Freund's adjuvant (CFA)-model of chronic inflammatory pain. In rodents, this model requires the injection of CFA into the hindpaw, muscle, or joint, which induces inflammation similar to what might be found in individuals with rheumatoid arthritis or tendonitis. While the mechanistic effects CFA on the spinal cord are well established, less is known about the effects of CFA on the brain. Thus, in this study, neuronal activation, as measured by c-Fos immunocytochemistry, in brain regions important to control of pain was evaluated. Animals that received CFA treatment, and tested 3 days later for mechanical allodynia and edema, had an increase in the number of c-Fos immunopositive cells in the basolateral amygdala, but not in any of the other brain regions that were evaluated. Given that the basolateral amygdala is known to be important for pain-related emotional responses, these data suggest that the CFA-model may provide an opportunity to further explore how pain affects this brain region at a mechanistic level, which in turn may shed light on what may be occurring in clinical populations.

Learn More >

Cortical spreading depolarisation-induced facial hyperalgesia, photophobia and hypomotility are ameliorated by sumatriptan and olcegepant.

Cortical spreading depolarisation (CSD), the neural mechanism underlying migraine aura, may cause headache by sensitising the trigeminal system. Photophobia, the most bothersome accompanying symptom during migraine attacks, is more prevalent in migraine with aura than in migraine without aura. Whether CSD plays a role in developing photophobia remains unknown. Moreover, migraine-induced physical hypoactivity contributes to loss of productivity. We aimed to investigate the development of trigeminal sensitisation, photophobia and locomotive abnormality after KCl-induced CSD using 86 male C57BL/6 mice. Sham-operated mice were used as controls. We confirmed the presence of trigeminal sensitisation and photophobia at 24 h after CSD. CSD-subjected mice also exhibited significantly reduced locomotive activity in both light and dark zones. Hence, the CSD-induced hypomobility was likely to be independent of photophobia. The 5-HT agonist, sumatriptan, corrected all these CSD-induced abnormalities. Moreover, dose dependency was demonstrated in the ameliorating effect of the calcitonin gene-related peptide (CGRP) receptor antagonist, olcegepant, on these abnormalities. Sumatriptan and olcegepant improved mouse locomotion with therapeutic lags ranging from 20 to 30 min. Collectively, CSD caused trigeminal sensitisation, photophobia and hypomobility that persisted for at least 24 h by a mechanism involving the 5-HT and CGRP activity.

Learn More >

Prescription opioid induce gut dysbiosis and exacerbate colitis in a murine model of Inflammatory Bowel Disease.

Opioids are the most prescribed analgesics for pain in Inflammatory Bowel Diseases (IBD), however the consequences of opioid use on IBD severity is not well defined. This is the first study investigating consequences of hydromorphone in both dextran sodium sulfate (DSS)-induced colitis and spontaneous colitis [IL-10 knockout (IL-10-/-)] mouse model of IBD.

Learn More >

Orchestrating Opiate-Associated Memories in Thalamic Circuits.

Disrupting memories that associate environmental cues with drug experiences holds promise for treating addiction, yet accessing the distributed neural network that stores such memories is challenging. Here, we show that the paraventricular nucleus of the thalamus (PVT) orchestrates the acquisition and maintenance of opiate-associated memories via projections to the central nucleus of the amygdala (CeA) and nucleus accumbens (NAc). PVT→CeA activity associates morphine reward to the environment, whereas transient inhibition of the PVT→NAc pathway during retrieval causes enduring protection against opiate-primed relapse. Using brain-wide activity mapping, we revealed distributed network activities that are altered in non-relapsing mice, which enabled us to find that activating the downstream NAc→lateral hypothalamus (LH) pathway also prevents relapse. These findings establish the PVT as a key node in the opiate-associated memory network and demonstrate the potential of targeting the PVT→NAc→LH pathway for treating opioid addiction.

Learn More >

Peripheral nerve injury and sensitization underlie pain associated with oral cancer perineural invasion.

Cancer invading into nerves, termed perineural invasion (PNI), is associated with pain. Here we show that oral cancer patients with PNI report greater spontaneous pain and mechanical allodynia compared with patients without PNI, suggesting unique mechanisms drive PNI-induced pain. We studied the impact of PNI on peripheral nerve physiology and anatomy using a murine sciatic nerve PNI model. Mice with PNI exhibited spontaneous nociception and mechanical allodynia. PNI induced afterdischarge in A high threshold mechanoreceptors (AHTMRs), mechanical sensitization (i.e., decreased mechanical thresholds) in both A and C HTMRs, and mechanical desensitization in low threshold mechanoreceptors (LTMRs). PNI resulted in nerve damage, including axon loss, myelin damage, and axon degeneration. Electrophysiological evidence of nerve injury included decreased conduction velocity, and increased percentage of both mechanically-insensitive and electrically-unexcitable neurons. We conclude that PNI-induced pain is driven by nerve injury and peripheral sensitization in HTMRs.

Learn More >

Testosterone protects against the development of widespread muscle pain in mice.

Chronic widespread pain conditions are more prevalent in women than men suggesting a role for gonadal hormones in the observed differences. Previously, we showed female mice, compared to male, develop widespread, more severe, and longer duration hyperalgesia in a model of activity-induced muscle pain. We hypothesized testosterone protects males from developing the female pain phenotype. We tested if orchiectomy of males prior to induction of an activity-induced pain model produced a female phenotype and if testosterone administration produced a male phenotype in females. Orchiectomy produced longer lasting, more widespread hyperalgesia, similar to females. Administration of testosterone to females or orchiectomized males produced unilateral, shorter lasting hyperalgesia. Prior studies show that the serotonin transporter (SERT) is increased in the nucleus raphe magnus (NRM) in models of chronic pain, and that blockade of SERT in the NRM reduces hyperalgesia. We examined potential sex differences in the distribution of SERT across brain sites involved in nociceptive processing using immunohistochemistry. A sex difference in SERT was found in the NRM in the activity-induced pain model; females had greater SERT-immunoreactivity than males. This suggests testosterone protects against development of widespread, long-lasting muscle pain and that alterations in SERT may underlie the sex differences.

Learn More >

Analgesic dorsal root ganglionic field stimulation blocks conduction of afferent impulse trains selectively in nociceptive sensory afferents.

Increased excitability of primary sensory neurons after peripheral nerve injury may cause hyperalgesia and allodynia. Dorsal root ganglion field stimulation (GFS) is effective in relieving clinical pain associated with nerve injury and neuropathic pain in animal models. However, its mechanism has not been determined. We examined effects of GFS on transmission of action potentials (APs) from the peripheral to central processes by in vivo single unit recording from lumbar dorsal roots in sham injured rats and rats with tibial nerve injury (TNI) in fiber types defined by conduction velocity. Transmission of APs directly generated by GFS (20Hz) in C-type units progressively abated over 20s, whereas GFS-induced Aβ activity persisted unabated, while Aδ showed an intermediate pattern. Activity generated peripherally by electrical stimulation of the sciatic nerve and punctate mechanical stimulation of the receptive field (glabrous skin) was likewise fully blocked by GFS within 20s in C-type units, whereas Aβ units were minimally affected and a subpopulation of Aδ units were blocked. After tibial nerve injury, the threshold to induce AP firing by punctate mechanical stimulation (von Frey) was reduced, which was reversed to normal during GFS. These results also suggest that C-type fibers, not Aβ, mainly contribute to mechanical and thermal hypersensitivity (von Frey, bush, acetone) after injury. GFS produces use-dependent blocking of afferent AP trains, consistent with enhanced filtering of APs at the sensory neuron T-junction, particularly in nociceptive units.

Learn More >

The Cytokine TGF-β Induces Interleukin-31 Expression from Dermal Dendritic Cells to Activate Sensory Neurons and Stimulate Wound Itching.

Cutaneous wound healing is associated with the unpleasant sensation of itching. Here we investigated the mechanisms underlying this type of itch, focusing on the contribution of soluble factors released during healing. We found high amounts of interleukin 31 (IL-31) in skin wound tissue during the peak of itch responses. Il31 mice lacked wound-induced itch responses. IL-31 was released by dermal conventional type 2 dendritic cells (cDC2s) recruited to wounds and increased itch sensory neuron sensitivity. Transfer of cDC2s isolated from late-stage wounds into healthy skin was sufficient to induce itching in a manner dependent on IL-31 expression. Addition of the cytokine TGF-β1, which promotes wound healing, to dermal DCs in vitro was sufficient to induce Il31 expression, and Tgfbr1 CD11c-Cre mice exhibited reduced scratching and decreased Il31 expression in wounds in vivo. Thus, cDC2s promote itching during skin would healing via a TGF-β-IL-31 axis with implications for treatment of wound itching.

Learn More >

Cyclin-dependent-like kinase 5 is required for pain signaling in human sensory neurons and mouse models.

Cyclin-dependent-like kinase 5 () gene mutations lead to an X-linked disorder that is characterized by infantile epileptic encephalopathy, developmental delay, and hypotonia. However, we found that a substantial percentage of these patients also report a previously unrecognized anamnestic deficiency in pain perception. Consistent with a role in nociception, we found that CDKL5 is expressed selectively in nociceptive dorsal root ganglia (DRG) neurons in mice and in induced pluripotent stem cell (iPS)-derived human nociceptors. CDKL5-deficient mice display defective epidermal innervation, and conditional deletion of in DRG sensory neurons impairs nociception, phenocopying CDKL5 deficiency disorder in patients. Mechanistically, CDKL5 interacts with calcium/calmodulin-dependent protein kinase II α (CaMKIIα) to control outgrowth and transient receptor potential cation channel subfamily V member 1 (TRPV1)-dependent signaling, which are disrupted in both mutant murine DRG and human iPS-derived nociceptors. Together, these findings unveil a previously unrecognized role for CDKL5 in nociception, proposing an original regulatory mechanism for pain perception with implications for future therapeutics in CDKL5 deficiency disorder.

Learn More >

Search