I am a
Home I AM A Search Login

Animal Studies

Share this

Maturational Changes in Mouse Cutaneous Touch and Piezo2-Mediated Mechanotransduction.

The age of studied animals has a profound impact on experimental outcomes in animal-based research. In mice, age influences molecular, morphological, physiological, and behavioral parameters, particularly during rapid postnatal growth and maturation until adulthood (at 12 weeks of age). Despite this knowledge, most biomedical studies use a wide-spanning age range from 4 to 12 weeks, raising concerns about reproducibility and potential masking of relevant age differences. Here, using mouse behavior and electrophysiology in cultured dorsal root ganglia (DRG), we reveal a decline in behavioral cutaneous touch sensitivity and Piezo2-mediated mechanotransduction in vitro during mouse maturation but not thereafter. In addition, we identify distinct transcript changes in individual Piezo2-expressing mechanosensitive DRG neurons by combining electrophysiology with single-cell RNA sequencing (patch-seq). Taken together, our study emphasizes the need for accurate age matching and uncovers hitherto unknown maturational plasticity in cutaneous touch at the level of behavior, mechanotransduction, and transcripts.

Learn More >

Gene coexpression patterns predict opiate-induced brain-state transitions.

Opioid addiction is a chronic, relapsing disorder associated with persistent changes in brain plasticity. Reconfiguration of neuronal connectivity may explain heightened abuse liability in individuals with a history of chronic drug exposure. To characterize network-level changes in neuronal activity induced by chronic opiate exposure, we compared FOS expression in mice that are morphine-naïve, morphine-dependent, or have undergone 4 wk of withdrawal from chronic morphine exposure, relative to saline-exposed controls. Pairwise interregional correlations in FOS expression data were used to construct network models that reveal a persistent reduction in connectivity strength following opiate dependence. Further, we demonstrate that basal gene expression patterns are predictive of changes in FOS correlation networks in the morphine-dependent state. Finally, we determine that regions of the hippocampus, striatum, and midbrain are most influential in driving transitions between opiate-naïve and opiate-dependent brain states using a control theoretic approach. This study provides a framework for predicting the influence of specific therapeutic interventions on the state of the opiate-dependent brain.

Learn More >

Discovery of a Highly Selective Sigma-2 Receptor Ligand, 1-(4-(6,7-Dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-3-methyl-1H-benzo[d]imidazol-2(3H)-one (CM398), with Drug-Like Properties and Antinociceptive Effects In Vivo.

The sigma-2 receptor has been cloned and identified as Tmem97, which is a transmembrane protein involved in intracellular Ca regulation and cholesterol homeostasis. Since its discovery, the sigma-2 receptor has been an extremely controversial target, and many efforts have been made to elucidate the functional role of this receptor during physiological and pathological conditions. Recently, this receptor has been proposed as a potential target to treat neuropathic pain due to the ability of sigma-2 receptor agonists to relieve mechanical hyperalgesia in mice model of chronic pain. In the present work, we developed a highly selective sigma-2 receptor ligand (sigma-1/sigma-2 selectivity ratio > 1000), 1-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-3-methyl-1H- benzo[d]imidazol-2(3H)-one (CM398), with an encouraging in vitro and in vivo pharmacological profile in rodents. In particular, radioligand binding studies demonstrated that CM398 had preferential affinity for sigma-2 receptor compared with sigma-1 receptor and at least four other neurotransmitter receptors sites, including the norepinephrine transporter. Following oral administration, CM398 showed rapid absorption and peak plasma concentration (Cmax) occurred within 10 min of dosing. Moreover, the compound showed adequate, absolute oral bioavailability of 29.0%. Finally, CM398 showed promising anti-inflammatory analgesic effects in the formalin model of inflammatory pain in mice. The results collected in this study provide more evidence that selective sigma-2 receptor ligands can be useful tools in the development of novel pain therapeutics and altogether, these data suggest that CM398 is a suitable lead candidate for further evaluation.

Learn More >

Depolarization-dependent C-Raf signaling promotes hyperexcitability and reduces opioid sensitivity of isolated nociceptors after spinal cord injury.

Chronic pain caused by spinal cord injury (SCI) is notoriously resistant to treatment, particularly by opioids. After SCI, dorsal root ganglion neurons show hyperactivity and chronic depolarization of resting membrane potential (RMP) that is maintained by cAMP signaling through PKA and EPAC. Importantly, SCI also reduces the negative regulation by Gαi of adenylyl cyclase and its production of cAMP, independent of alterations in G protein-coupled receptors and/or G proteins. Opioid reduction of pain depends upon coupling of opioid receptors to Gαi/o family members. Combining high-content imaging and cluster analysis, we show that in male rats SCI decreases opioid responsiveness in vitro within a specific subset of small-diameter nociceptors that bind isolectin B4. This SCI effect is mimicked in nociceptors from naïve animals by a modest 5 min depolarization of RMP (15 mM K; -45 mV), reducing inhibition of cAMP signaling by mu-opioid receptor agonists DAMGO and morphine. Disinhibition and activation of C-Raf by depolarization-dependent phosphorylation are central to these effects. Expression of an activated C-Raf reduces sensitivity of adenylyl cyclase to opioids in non-excitable HEK293 cells, while inhibition of C-Raf or treatment with the hyperpolarizing drug retigabine restores opioid responsiveness and blocks spontaneous activity of nociceptors after SCI. Inhibition of ERK downstream of C-Raf also blocks SCI-induced hyperexcitability and depolarization, without direct effects on opioid responsiveness. Thus, depolarization-dependent C-Raf and downstream ERK activity maintain a depolarized resting membrane potential and nociceptor hyperactivity after SCI, providing a self-reinforcing mechanism to persistently promote nociceptor hyperexcitability and limit the therapeutic effectiveness of opioids.Chronic pain induced by spinal cord injury (SCI) is often permanent and debilitating, and usually refractory to treatment with analgesics, including opioids. SCI-induced pain in a rat model has been shown to depend upon persistent hyperactivity in primary nociceptors (injury-detecting sensory neurons), associated with a decrease in the sensitivity of adenylyl cyclase production of cAMP to inhibitory Gαi proteins in dorsal root ganglia. This study shows that SCI and one consequence of SCI — chronic depolarization of resting membrane potential — decrease sensitivity to opioid-mediated inhibition of cAMP and promote hyperactivity of nociceptors by enhancing C-Raf activity. ERK activation downstream of C-Raf is necessary for maintaining ongoing depolarization and hyperactivity, demonstrating an unexpected positive feedback loop to persistently promote pain.

Learn More >

Protective role of neuronal and lymphoid cannabinoid CB receptors in neuropathic pain.

Cannabinoid CB receptor (CB) agonists are potential analgesics void of psychotropic effects. Peripheral immune cells, neurons and glia express CB, however the involvement of CB from these cells in neuropathic pain remains unresolved. We explored spontaneous neuropathic pain through on-demand self-administration of the selective CB agonist JWH133 in wild-type and knockout mice lacking CB in neurons, monocytes or constitutively. Operant self-administration reflected drug-taking to alleviate spontaneous pain, nociceptive and affective manifestations. While constitutive deletion of CB disrupted JWH133-taking behavior, this behavior was not modified in monocyte-specific CB knockouts and was increased in mice defective in neuronal CB knockouts suggestive of increased spontaneous pain. Interestingly, CB-positive lymphocytes infiltrated the injured nerve and possible CBtransfer from immune cells to neurons was found. Lymphocyte CBdepletion also exacerbated JWH133 self-administration and inhibited antinociception. This work identifies a simultaneous activity of neuronal and lymphoid CBthat protects against spontaneous and evoked neuropathic pain.

Learn More >

Mu opioid receptors on vGluT2-expressing glutamatergic neurons modulate opioid reward.

The role of Mu opioid receptor (MOR)-mediated regulation of GABA transmission in opioid reward is well established. Much less is known about MOR-mediated regulation of glutamate transmission in the brain and how this relates to drug reward. We previously found that MORs inhibit glutamate transmission at synapses that express the Type 2 vesicular glutamate transporter (vGluT2). We created a transgenic mouse that lacks MORs in vGluT2-expressing neurons (MORflox-vGluT2cre) to demonstrate that MORs on the vGluT2 neurons themselves mediate this synaptic inhibition. We then explored the role of MORs in vGluT2-expressing neurons in opioid-related behaviors. In tests of conditioned place preference, MORflox-vGluT2cre mice did not acquire place preference for a low dose of the opioid, oxycodone, but displayed conditioned place aversion at a higher dose, whereas control mice displayed preference for both doses. In an oral consumption assessment, these mice consumed less oxycodone and had reduced preference for oxycodone compared with controls. MORflox-vGluT2cre mice also failed to show oxycodone-induced locomotor stimulation. These mice displayed baseline withdrawal-like responses following the development of oxycodone dependence that were not seen in littermate controls. In addition, withdrawal-like responses in these mice did not increase following treatment with the opioid antagonist, naloxone. However, other MOR-mediated behaviors were unaffected, including oxycodone-induced analgesia. These data reveal that MOR-mediated regulation of glutamate transmission is a critical component of opioid reward.

Learn More >

Relevance of Mitochondrial Dysfunction in the Reserpine-Induced Experimental Fibromyalgia Model.

Fibromyalgia (FM) is one of the most common musculoskeletal pain conditions. Although the aetiology of FM is still unknown, mitochondrial dysfunction and the overproduction of reactive oxygen intermediates (ROI) are common characteristics in its pathogenesis. The reserpine experimental model can induce FM-related symptoms in rodents by depleting biogenic amines. However, it is unclear whether reserpine causes other pathophysiologic characteristics of FM. So far, no one has investigated the relevance of mitochondrial dysfunction in the reserpine-induced experimental FM model using protection- and insult-based mitochondrial modulators. Reserpine (1 mg/kg) was subcutaneously injected once daily for three consecutive days in male Swiss mice. We carried out analyses of reserpine-induced FM-related symptoms, and their modulation by using mitochondrial insult on ATP synthesis (oligomycin; 1 mg/kg, intraperitoneally) or mitochondrial protection (coenzyme Q10; 150 mg/kg/5 days, orally). We also evaluated the effect of reserpine on mitochondrial function using high-resolution respirometry and oxidative status. Reserpine caused nociception, loss in muscle strength, and anxiety- and depressive-like behaviours in mice that were consistent with clinical symptoms of FM, without inducing body weight and temperature alterations or motor impairment. Reserpine-induced FM-related symptoms were increased by oligomycin and reduced by coenzyme Q10 treatment. Reserpine caused mitochondrial dysfunction by negatively modulating the electron transport system and mitochondrial respiration (ATP synthesis) mainly in oxidative muscles and the spinal cord. These results support the role of mitochondria in mediating oxidative stress and FM symptoms in this model. In this way, reserpine-inducing mitochondrial dysfunction and increased production of ROI contribute to the development and maintenance of nociceptive, fatigue, and depressive-like behaviours.

Learn More >

Assessment of the anti-hyperalgesic efficacy of J-2156, relative to clinically available analgesic/adjuvant agents in a rat model of mild to moderate chronic mechanical low back pain (LBP).

Chronic mechanical low back pain (cLBP) is a leading cause of disability and a major socio-economic burden internationally. The lifetime prevalence of non-specific LBP is approximately 84%, with the prevalence of cLBP at about 23%. Clinically available analgesic/adjuvant medications often provide inadequate pain relief in patients experiencing cLBP. Hence, the urgency for discovery of effective and better tolerated medications. Fourteen days after the induction of 5 shallow annular punctures (5X) in the lumbar intervertebral discs at L4/L5 and L5/L6 in male Sprague-Dawley rats, mechanical hyperalgesia was fully developed in the lumbar axial deep tissues at L4/L5 (primary) and L1 (secondary). Importantly, mechanical allodynia in the hindpaws was absent. From day 28, we assessed the face validity of our mild to moderate LBP-5X rat model using four clinically available analgesic/adjuvant drugs, namely gabapentin, morphine, meloxicam and amitriptyline relative to vehicle. Additionally, the anti-hyperalgesic effects of J-2156, a highly selective small molecule somatostatin type 4 receptor agonist was assessed. Single i.p. bolus doses of gabapentin and meloxicam at the highest doses tested (100 and 30 mg/kg respectively) alleviated secondary hyperalgesia (L1) but not primary hyperalgesia (L4/5). Morphine at 1 mg/kg alleviated both primary and secondary hyperalgesia in these tissues, whereas amitriptyline at the doses tested, lacked efficacy. These findings attest to the face validity of our model. J-2156 at 10 and 30 mg/kg alleviated secondary hyperalgesia in the lumbar axial deep tissues at L1 with a non-significant trend for relief of primary hyperalgesia in the corresponding tissues at L4/L5 in these animals.

Learn More >

Endoplasmic reticulum stress in the dorsal root ganglia regulates large-conductance potassium channels and contributes to pain in a model of multiple sclerosis.

Neuropathic pain is a common symptom of multiple sclerosis (MS) and current treatment options are ineffective. In this study, we investigated whether endoplasmic reticulum (ER) stress in dorsal root ganglia (DRG) contributes to pain hypersensitivity in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS. Inflammatory cells and increased levels of ER stress markers are evident in post-mortem DRGs from MS patients. Similarly, we observed ER stress in the DRG of mice with EAE and relieving ER stress with a chemical chaperone, 4-phenylbutyric acid (4-PBA), reduced pain hypersensitivity. In vitro, 4-PBA and the selective PERK inhibitor, AMG44, normalize cytosolic Ca transients in putative DRG nociceptors. We went on to assess disease-mediated changes in the functional properties of Ca -sensitive BK-type K channels in DRG neurons. We found that the conductance-voltage (GV) relationship of BK channels was shifted to a more positive voltage, together with a more depolarized resting membrane potential in EAE cells. Our results suggest that ER stress in sensory neurons of MS patients and mice with EAE is a source of pain and that ER stress modulators can effectively counteract this phenotype.

Learn More >

Astrocytic NDRG2 is critical in the maintenance of neuropathic pain.

Activation of astrocytes and abnormal synaptic glutamate metabolism are closely associated with the induction and maintenance of neuropathic pain (NP), but the exact mechanism underlying this association remains unclear. N-myc downstream-regulated gene 2 (NDRG2), a novel tumor-suppressor protein and stress-response gene, is involved in the pathogenesis of several neurodegenerative diseases. However, its role in nociceptive transduction has rarely been investigated. Here, we found that NDRG2, which was mainly expressed in the astrocytes in the central nervous system (CNS), was increased in the spinal cord of a spinal nerve ligation (SNL) rat model for NP. Suppression of NDRG2 by intrathecal injection of an NDRG2-RNAi-adenovirus significantly alleviated SNL-induced mechanical and thermal hypersensitivity, as well as elevated astrocytic glutamate transporter 1 (GLT-1) expression and downregulated pro-inflammatory cytokine levels, in the spinal dorsal horn of rats on Day 10 after SNL. Furthermore, in lipopolysaccharide (LPS)-stimulated primary astrocytic cultures derived from neonatal rats, inhibition of NDRG2 significantly reversed both the LPS-induced activation of astrocytes and decreased expression of GLT-1. By contrast, overexpression of NDRG2 by an adenoviral vector carrying NDRG2 resulted in astrocytic activation, aberrant glutamatergic neurotransmission, and spontaneous nociceptive responses in rats. Intrathecal injection of AG490, which is an inhibitor of the Janus tyrosine kinase and signal transducer and activator of the transcription 3 (JAK/STAT3) signaling pathway, significantly attenuated both mechanical and thermal hyperalgesia, as well as inhibited reactive astrocytes and restored normal expression levels of astrocytic GLT-1, in the spinal dorsal horn of NDRG2-overexpression rats. In conclusion, spinal astrocytic NDRG2 is critical in the maintenance of NP. Moreover, NDRG2 modulates astrocytic activation and inflammatory responses via regulating GLT-1 expression through the JAK/STAT3 signaling pathway. Our findings suggested that NDRG2 could be a novel therapeutic target for the treatment of NP.

Learn More >

Search