I am a
Home I AM A Search Login

Animal Studies

Share this

Deficiency in the function of inhibitory interneurons contributes to glutamate-associated central sensitization through GABABR2-SynCAM1 signaling in chronic migraine rats.

The occurrence of pain has always been closely related to a break in the balance between excitatory and inhibitory systems, and the internal relationship between these two systems has not been studied in the pathogenesis of chronic migraine (CM). In this study, we explored how inhibitory interneurons specifically modulate the glutamate-induced hyperexcitability in the periaqueductal gray (PAG) of CM rats. The CM model was established by repeated dural infusion of inflammatory soup (IS) in rats. Then, Baclofen, a gamma-aminobutyric acid type B receptor (GABABR) agonist; CGP35348, a GABABR antagonist; H89, a protein kinase A (PKA) inhibitor; and 8-Bromo-cAMP, a PKA agonist, were applied by intraventricular injection to investigate the detailed CM mechanism. Our results showed that GABABR2 mRNA and protein levels were significantly downregulated (P < .01) in the PAG of CM rats. Similarly, gamma-aminobutyric acid (GABA) and its synthetase glutamate decarboxylase 65/67 (GAD65/67) seriously decreased (P < .01), implying a deficit in the function of inhibitory interneurons in the PAG of CM rats. Afterward, the application of Baclofen and H89 alleviated the IS-evoked hyperalgesia and extenuated vesicular glutamate transporter 2 (VGLUT2), glutamate, calcitonin gene-related peptide (CGRP), and c-Fos expression by regulating the GABABR2/PKA/SynCAM1 pathway in the PAG of CM rats, while the application of CGP35348 and 8-Bromo-cAMP exactly exerted the opposite effect. Importantly, CGP35348 induced an elevation of CGRP, and VGLUT2 expression was relieved by H89. These data suggest that the loss in the function of inhibitory interneurons contributes to glutamate-associated central sensitization through the GABABR2/PKA/SynCAM1 pathway in the PAG of CM rats.

Learn More >

Exacerbated Headache-Related Pain in the Single Prolonged Stress Preclinical Model of Post-traumatic Stress Disorder.

Chronic headache pain is one of the most commonly reported comorbid pain conditions with post-traumatic stress disorder (PTSD) patients and resistant to effective treatment, yet no combined preclinical model of the two disorders has been reported. Here, we used a modified chronic headache pain model to investigate the contribution of single prolonged stress (SPS) model of PTSD with sodium nitroprusside (SNP)-induced hyperalgesia. Injection of SNP (2 mg/kg, i.p.) occurred every other day from day 7 to day 15 after initiation of SPS in rats. Paw withdrawal threshold (PWT) to von Frey stimuli and tail flick latencies (TFL) dramatically decreased as early as 7 days after SPS and lasted until at least day 21. Basal PWT and TFL also significantly decreased during the SNP treatment period. The lower nociceptive thresholds recovered in 6 days following the final SNP injection in SNP group, but not in SPS + SNP group. Elevated nociceptin/OFQ (N/OFQ) levels observed in cerebrospinal fluid of SPS rats were even higher in SPS + SNP group. Glial fibrillary acidic protein (GFAP) and N/OFQ peptide (NOP) receptor mRNA expression increased in dorsal root ganglia (DRG) 21 days after SPS exposure; mRNA increases in the SPS/SNP group was more pronounced than SPS or SNP alone. GFAP protein expression was upregulated in trigeminal ganglia by SPS. Our results indicate that traumatic stress exaggerated chronic SNP-induced nociceptive hypersensitivity, and that N/OFQ and activated satellite glia cells may play an important role in the interaction between both conditions.

Learn More >

The analgesic effects of pioglitazone in the bone cancer pain rats via regulating the PPARγ/PTEN/mTOR signaling pathway in the spinal dorsal horn.

Bone cancer pain (BCP) remains a difficult clinical problem. This study examined whether pioglitazone, a peroxisome proliferator-activated receptor gamma (PPARγ) agonist, is effective for attenuating BCP, and investigated the interaction between activation of PPARγ and phosphatase and tensin homolog deleted from chromosome 10 (PTEN) / mammalian target of rapamycin (mTOR) signal in the spinal dorsal horn (SDH) of BCP rats.

Learn More >

Role of peripheral sensory neuron mu-opioid receptors in nociceptive, inflammatory, and neuropathic pain.

The role of peripheral mu-opioid receptors (MOPs) in chronic pain conditions is not well understood. Here, we used a combination of mouse genetics, behavioral assays, and pharmacologic interventions to investigate the contribution of primary afferent MOPs to nociceptive, inflammatory, and neuropathic pain, as well as to opioid analgesia.

Learn More >

Sexual dimorphism in the contribution of neuroendocrine stress axes to oxaliplatin-induced painful peripheral neuropathy.

While clinical studies support the suggestion that stress is a risk factor for painful chemotherapy-induced peripheral neuropathy (CIPN), there is little scientific validation to support this link. Here, we evaluated the impact of stress on CIPN induced by oxaliplatin, and its underlying mechanisms, in male and female rats. A single dose of oxaliplatin produced mechanical hyperalgesia of similar magnitude in both sexes, still present at similar magnitude in both sexes, on day 28. Adrenalectomy mitigated oxaliplatin-induced hyperalgesia, in both sexes. To confirm the role of neuroendocrine stress axes in CIPN, intrathecal administration of antisense oligodeoxynucleotide (AS-ODN) targeting β2-adrenergic receptor mRNA both prevented and reversed oxaliplatin-induced hyperalgesia, only in males. In contrast, glucocorticoid receptor AS-ODN, prevented and reversed oxaliplatin-induced hyperalgesia in both sexes. Unpredictable sound stress enhanced CIPN, in both sexes. The administration of stress hormones, epinephrine, corticosterone and their combination, at stress levels, mimicked the effects of sound stress on CIPN, in males. In females, only corticosterone mimicked the effect of sound stress. Also a risk factor for CIPN, early life stress, was evaluated by producing both stress-sensitive (produced by neonatal limited bedding, NLB) and stress-resilient (produced by neonatal handling, NH) phenotypes in adults. While NLB significantly enhanced CIPN only in female adults, NH significantly attenuated CIPN, in both sexes. Our study demonstrates a sexually dimorphic role of the two major neuroendocrine stress axes in oxaliplatin-induced neuropathic pain.

Learn More >

Morphine and Fentanyl Repeated Administration Induces Different Levels of NLRP3-Dependent Pyroptosis in the Dorsal Raphe Nucleus of Male Rats via Cell-Specific Activation of TLR4 and Opioid Receptors.

Morphine promotes neuroinflammation after NOD-like receptor protein 3 (NLRP3) oligomerization in glial cells, but the capacity of other opioids to induce neuroinflammation and its relationship to the development of analgesic tolerance is unknown. We studied the effects of morphine and fentanyl on NLRP3 inflammasome activation in glial and neuronal cells in the dorsal raphe nucleus (DRN), a region involved in pain regulation. Male Wistar rats received i.p. injections of morphine (10 mg/kg) or fentanyl (0.1 mg/kg) 3 × daily for 7 days and were tested for nociception. Two hours after the last (19th) administration, we analyzed NLRP3 oligomerization, caspase-1 activation and gasdermin D-N (GSDMD-N) expression in microglia (CD11b positive cells), astrocytes (GFAP-positive cells) and neurons (NeuN-positive cells). Tolerance developed to both opioids, but only fentanyl produced hyperalgesia. Morphine and fentanyl activated NLRP3 inflammasome in astrocytes and serotonergic (TPH-2-positive) neurons, but fentanyl effects were more pronounced. Both opioids increased GFAP and CD11b immunoreactivity, caspase-1 and GSDMD activation, indicating pyroptotic cell death. The opioid receptor antagonist (-)-naloxone, but not the TLR4 receptor antagonist (+)-naloxone, prevented microglia activation and NLRP3 oligomerization. Only (+)-naloxone prevented astrocytes' activation. The anti-inflammatory agent minocycline and the NLRP3 inhibitor MCC950 delayed tolerance to morphine and fentanyl antinociception and prevented fentanyl-induced hyperalgesia. MCC950 also prevented opioid-induced NLRP3 oligomerization. In conclusion, morphine and fentanyl differentially induce cell-specific activation of NLRP3 inflammasome and pyroptosis in the DRN through TLR4 receptors in astrocytes and through opioid receptors in neurons, indicating that neuroinflammation is involved in opioid-induced analgesia and fentanyl-induced hyperalgesia after repeated administrations.

Learn More >

High-frequency spinal cord stimulation treatment attenuates the increase in spinal glutamate release and spinal miniature excitatory postsynaptic currents in rats with spared nerve injury-induced neuropathic pain.

High-frequency spinal cord stimulation (HFSCS) at 10 kHz provides paresthesia-free treatment for chronic pain. However, the underlying mechanisms of its action have not been fully elucidated. The aim of the present study was to investigate the effect of HFSCS treatment on spinal glutamate release and uptake in spared nerve injury (SNI) rats. HFSCS was applied to the T10/T11 spinal cord 3 days after SNI. The concentration of spinal glutamate, glutamate transporter activity and miniature excitatory postsynaptic currents (mEPSCs) from neurons in lamina II were evaluated. HFSCS treatment alleviated SNI pain induced by mechanical and cold allodynia. HFSCS treatment also partially restored altered spinal glutamate uptake activity, the levels of spinal glutamate, and the frequency of mEPSCs following SNI. In conclusion, HFSCS treatment attenuated SNI-induced neuropathic pain and partially restored the altered glutamate uptake after SNI.

Learn More >

AAV-Mediated Combination Gene Therapy for Neuropathic Pain: GAD65, GDNF, and IL-10.

Neuropathic pain is a chronic pain state characterized by nerve damage, inflammation, and nociceptive neuron hyperactivity. As the underlying pathophysiology is complex, a more effective therapy for neuropathic pain would be one that targets multiple elements. Here, we generated recombinant adeno-associated viruses (AAVs) encoding three therapeutic genes, namely, , , and , with various combinations. The efficacy for pain relief was evaluated in a rat spared nerve injury model of neuropathic pain. The maximal analgesic effect was achieved when the AAVs expressing all three genes were administered to rats with neuropathic pain. The combination of two virus constructs expressing the three genes was named KLS-2031 and evaluated as a potential novel therapeutic for neuropathic pain. Single transforaminal epidural injections of KLS-2031 into the intervertebral foramen to target the appropriate dorsal root ganglion produced notable long-term analgesic effects in female and male rats. Furthermore, KLS-2031 mitigated the neuroinflammation, neuronal cell death, and dorsal root ganglion hyperexcitability induced by the spared nerve injury. These results suggest that KLS-2031 represents a promising therapeutic option for refractory neuropathic pain.

Learn More >

Centrally administered CYP2D inhibitors increase oral tramadol analgesia in rats.

Cytochrome P450 2D (CYP2D) mediates the activation and inactivation of several classes of psychoactive drugs, including opioids, which can alter drug response. Tramadol is a synthetic opioid with analgesic activity of its own as well as being metabolically activated by CYP2D to O-desmethyltramadol (ODMST) an opioid receptor agonist. We investigated the impact of brain CYP2D metabolism on central tramadol and ODSMT levels, and resulting analgesic response after oral tramadol administration in rats. CYP2D inhibitors propranolol and propafenone were administered intracerebroventricularly prior to oral tramadol administration and analgesia was measured by tail-flick latency. Drug levels of tramadol and its metabolites, ODSMT and N-desmethyltramadol, were assessed in plasma and in brain by microdialysis using LC-ESI-MS/MS. Inhibiting brain CYP2D with propafenone pretreatment increased analgesia after oral tramadol administration (ANOVA p = 0.02), resulting in a 1.5-fold increase in area under the analgesia-time curve (AUC, p < 0.01). This effect was associated with changes in the brain levels of tramadol and its metabolites consistent with brain CYP2D inhibition. In conclusion, under oral tramadol dosing pretreatment with a central administration of the CYP2D inhibitor propafenone increased analgesia (without altering plasma drug or metabolite levels), indicating that tramadol itself (and activity of CYP2D within the brain) contributed to analgesia.

Learn More >

The spinal anti-allodynic effects of endomorphin analogs with C-terminal hydrazide modification in neuropathic pain model.

The present study was undertaken to further investigate the spinal anti-allodynic effects of endomorphins (EMs) and their C-terminal hydrazide modified analogs EM-1-NHNH and EM-2-NHNH in the spared nerve injury (SNI) model of neuropathic pain in mice. Our results demonstrated that intrathecal (i.t.) administration of endomorphin-1 (EM-1), endomorphin-2 (EM-2), EM-1-NHNH and EM-2-NHNH produced potent anti-allodynic effects ipsilaterally in neuropathic pain model. Judging from the area under the curve (AUC) values, these two analogs exhibited higher antinociception than their parent peptides. Moreover, they also displayed significant antinociceptive effects in the contralateral paw administered intrathecally. Interestingly, EM-1 and its analog EM-1-NHNH displayed their antinociception probably by μ-opioid receptor subtype since the μ-opioid receptor antagonist naloxonazine didn't significantly block the anti-allodynia of EM-1 and EM-1-NHNH, which implied a same opioid mechanism. However, the anti-allodynia induced by EM-2, but not EM-2-NHNH was significantly reduced by both μ-opioid antagonist, naloxonazine and κ-antagonist, nor-binaltorphamine (nor-BNI), indicating multiple opioid receptors were involved in the anti-allodynic effects of EM-2. Most importantly, EM-1-NHNH decreased the antinociceptive tolerance, and EM-2-NHNH displayed non-tolerance-forming antinociception. Therefore, C-terminal amide to hydrazide conversion changed the spinal antinociceptive profiles of EMs in neuropathic pain. The present investigation is of great value in the development of novel opioid therapeutics against neuropathic pain.

Learn More >

Search