I am a
Home I AM A Search Login

Animal Studies

Share this

Lack of effect of different pain-related manipulations on opioid self-administration, reinstatement of opioid seeking, and opioid choice in rats.

Pain-related factors increase the risk for opioid addiction, and pain may function as a negative reinforcer to increase opioid taking and seeking. However, experimental pain-related manipulations generally do not increase opioid self-administration in rodents. This discrepancy may reflect insufficient learning of pain-relief contingencies or confounding effects of pain-related behavioral impairments. Here, we determined if pairing noxious stimuli with opioid self-administration would promote pain-related reinstatement of opioid seeking or increase opioid choice over food.

Learn More >

The encoding of cutaneous stimuli by lamina I projection neurons.

Lamina I of the dorsal horn, together with its main output pathway, lamina I projection neurons, have long been implicated in the processing of nociceptive stimuli, as well as the development of chronic pain conditions. However, the study of lamina I projection neurons is hampered by technical challenges, including the low throughput and selection biases of traditional electrophysiological techniques. Here we report on a technique which employs anatomical labelling strategies and in vivo imaging to simultaneously study a network of lamina I projection neurons in response to electrical and natural stimuli. While we were able to confirm the nociceptive involvement of this group of cells, we also describe an unexpected preference for innocuous cooling stimuli. We were able to characterize the thermal responsiveness of these cells in detail and found cooling responses decline when exposed to stable cold temperatures maintained for more than a few seconds, as well as to encode the intensity of the end temperature, while heating responses showed an unexpected reliance on adaptation temperatures.

Learn More >

Action of mefloquine/amitriptyline THN101 combination on neuropathic mechanical hypersensitivity in mice.

Tricyclic antidepressants that inhibit serotonin and noradrenaline reuptake, such as amitriptyline, are among the first-line treatments for neuropathic pain, which is caused by a lesion or disease affecting the somatosensory nervous system. These treatments are, however, partially efficient to alleviate neuropathic pain symptoms and better treatments are still highly required. Interactions between neurons and glial cells participate in neuropathic pain processes, and, importantly, connexins – transmembrane proteins involved in cell-cell communication – contribute to these interactions. In a neuropathic pain model in rats, mefloquine, a connexin inhibitor, has been shown to potentiate the anti-hyperalgesic effect of amitriptyline, a widely used antidepressant. In the present study, we further investigated this improvement of amitriptyline action by mefloquine, using the cuff model of neuropathic pain in mice. We first observed that oral mefloquine co-treatment prolonged the effect of amitriptyline on mechanical hypersensitivity by 12 hours after administration. Additionally, we showed that this potentiation was not due to pharmacokinetic interactions between the two drugs. Besides, lesional and pharmacological approaches showed that the prolonged effect was induced through noradrenergic descending pathways and the recruitment of α2 adrenergic receptors. Another connexin blocker, carbenoxolone, also improved amitriptyline action. Additional in vitro studies suggested that mefloquine may also directly act on serotonin transporters and on adenosine A1 and A2A receptors, but drugs acting on these other targets failed to amplify amitriptyline action. Together, our data indicate that pharmacological blockade of connexins potentiates the therapeutic effect of amitriptyline in neuropathic pain.

Learn More >

Pain-like behavior in mice can be induced by the environmental context in which the pain stimulus was previously given.

It has been known for decades that classical conditioning influences pain perception. However, the precise mechanism of pain modified by conditioning remains unclear, partly because of the lack of dedicated behavioral tests. In the present study, we aimed to develop a new method to detect conditioned pain using mice that were injected with formalin as an unconditioned nociceptive stimulus into the hind paw repetitively under a neutral environment. On the test day, the mice exhibited a pain-like behavior without the application of a pain stimulus in the environment. These results demonstrate that a conditioned nociceptive response can be induced by exposure alone to the environmental context in which the pain was previously experienced. The conditioned nociceptive response was sustained for at least 2 weeks. Furthermore, the conditioned nociceptive response was reduced by fentanyl but not by ibuprofen, pregabalin or fluvoxamine. This method may be useful for studying the mechanisms of irritable chronic pain and for the development of novel therapeutic strategies.

Learn More >

Antioxidants improve oxaliplatin-induced peripheral neuropathy in tumor-bearing mice model: role of spinal cord oxidative stress and inflammation.

Chemotherapy-Induced Peripheral Neuropathy (CIPN) is a common, difficult-to-treat, and dose-limiting side effect associated with Oxaliplatin (OXA) treatment. In this study, we evaluated the effect of three antioxidants – namely N-acetylcysteine, α-lipoic acid and vitamin E – upon nociceptive parameters and antitumor efficacy of OXA in a tumor-bearing Swiss mice model. Oral treatment with antioxidants inhibited both mechanical and cold allodynia when concomitantly administrated with OXA (preventive protocol), as well as in animals with previously established CIPN (therapeutic protocol). OXA increased Reactive Oxygen Species (ROS) production and lipoperoxidation, and augmented the content of pro-inflammatory cytokines (IL-1β and TNF-α) and expression of the astrocytic marker Gfap mRNA in the spinal cord. Antioxidants decreased ROS production and lipoperoxidation, and abolished neuroinflammation in OXA-treated animals. Toll-like receptor 4 (Tlr4) and inflammasome enzyme caspase-1/11 knockout mice treated with OXA showed reduced levels of pro-inflammatory cytokines (but not oxidative stress) in the spinal cord, which were associated with resistance to OXA-induced mechanical allodynia. Lastly, antioxidants affected neither antitumor activity nor hematological toxicity of OXA in vivo. The herein presented results are provocative for further evaluation of antioxidants in clinical management of chemotherapy-induced peripheral neuropathy. Perspectives: This study reports preventive and therapeutic efficacy of orally administrated antioxidants (N-acetylcysteine, α-lipoic-acid and Vitamin-E) for alleviating oxaliplatin-induced peripheral neuropathy in tumor-bearing mice. Antioxidants' anti-nociceptive effects are associated with inhibition of ROS-dependent neuroinflammation, and occur at no detriment of OXA antitumor activity, therefore indicating a translational potential of these compounds.

Learn More >

Diversity of receptor expression in central and peripheral mouse neurons estimated from single cell RNA sequencing.

Because somatosensory PNS neurons, in particular nociceptors, are specially tuned to be able to detect a wide variety of both exogenous and endogenous signals, one might assume that these neurons express a greater variety of receptor genes. This assumption has not been formally tested. Because cells detect such signals via cell surface receptors, we sought to formally test the hypothesis that PNS neurons might express a broader array of cell surface receptors than CNS neurons using existing single cell RNA sequencing resources from mouse. We focused our analysis on ion channels, G-protein coupled receptors (GPCRS), receptor tyrosine kinase and cytokine family receptors. In partial support of our hypothesis, we found that mouse PNS somatosensory, sympathetic and enteric neurons and CNS neurons have similar receptor expression diversity in families of receptors examined, with the exception of GPCRs and cytokine receptors which showed greater diversity in the PNS. Surprisingly, these differences were mostly driven by enteric and sympathetic neurons, not by somatosensory neurons or nociceptors. Secondary analysis revealed many receptors that are very specifically expressed in subsets of PNS neurons, including some that are unique among neurons for nociceptors. Finally, we sought to examine specific ligand-receptor interactions between T cells and PNS and CNS neurons. Again, we noted that most interactions between these cells are shared by CNS and PNS neurons despite the fact that T cells only enter the CNS under rare circumstances. Our findings demonstrate that both PNS and CNS neurons express an astonishing array of cell surface receptors and suggest that most neurons are tuned to receive signals from other cells types, in particular immune cells.

Learn More >

Plantar incision with severe muscle injury can be a cause of long-lasting postsurgical pain in the skin.

Although chronic local inflammation in deeper tissues after skin wound healing might produce chronification of acute postsurgical pain, its mechanisms have not been fully elucidated. We hypothesized that muscle injury and severe inflammation would prolong acute postsurgical pain by its central nervous system mechanisms.

Learn More >

Cannabinoid receptor agonists from Conus venoms alleviate pain-related behavior in rats.

Cannabinoid (CB) receptor agonists show robust antinociceptive effects in various pain models. However, most of the clinically potent CB1 receptor-active drugs derived from cannabis are considered concerning due to psychotomimetic side effects. Selective CB receptor ligands that do not induce CNS side effects are of clinical interest. The venoms of marine snail Conus are a natural source of various potent analgesic peptides, some of which are already FDA approved. In this study we evaluated the ability of several Conus venom extracts to interact with CB1 receptor. HEK293 cells expressing CB1 receptors were treated with venom extracts and CB1 receptor internalization was analyzed by immunofluorescence. Results showed C. textile (C. Tex) and C. miles (C. Mil) samples as the most potent. These were serially subfractionated by HPLC for subsequent analysis by internalization assays and for analgesic potency evaluated in the formalin test and after peripheral nerve injury. Intrathecal injection of C. Tex and C. Mil subfractions reduced flinching/licking behavior during the second phase of formalin test and attenuated thermal and mechanical allodynia in nerve injury model. Treatment with proteolytic enzymes reduced CB1 internalization of subfractions, indicating the peptidergic nature of CB1 active component. Further HPLC purification revealed two potent antinociceptive subfractions within C. Tex with CB1 and possible CB2 activity, with mild to no side effects in the CB tetrad assessment. CB conopeptides can be isolated from these active Conus venom-derived samples and further developed as novel analgesic agents for the treatment of chronic pain using cell based or gene therapy approaches.

Learn More >

Mechanistic insights into the role of the chemokine CCL2/CCR2 axis in dorsal root ganglia to peripheral inflammation and pain hypersensitivity.

Pain is reported as the leading cause of disability in the common forms of inflammatory arthritis conditions. Acting as a key player in nociceptive processing, neuroinflammation, and neuron-glia communication, the chemokine CCL2/CCR2 axis holds great promise for controlling chronic painful arthritis. Here, we investigated how the CCL2/CCR2 system in the dorsal root ganglion (DRG) contributes to the peripheral inflammatory pain sensitization.

Learn More >

Meningeal CGRP-Prolactin interaction evokes female-specific migraine behavior.

Migraine is three times more common in women. CGRP plays a critical role in migraine pathology and causes female-specific behavioral responses upon meningeal application. These effects are likely mediated through interactions of CGRP with signaling systems specific to females. Prolactin (PRL) levels have been correlated with migraine attacks. Here, we explore a potential interaction between CGRP and PRL in the meninges.

Learn More >

Search