I am a
Home I AM A Search Login

Animal Studies

Share this

Intracellular potassium depletion enhances apoptosis induced by staurosporine in cultured trigeminal satellite glial cells.

Satellite glial cells (SGC) surrounding neurons in sensory ganglia can buffer extracellular potassium, regulating the excitability of injured neurons and possibly influencing a shift from acute to neuropathic pain. SGC apoptosis may be a key component in this process. This work evaluated induction or enhancement of apoptosis in cultured trigeminal SGC following changes in intracellular potassium [K]ic.

Learn More >

Identification of Novel Regulators of Zalcitabine-Induced Neuropathic Pain.

Neuropathic pain is one of the foremost adverse effects that worsens quality of life for patients undergoing an antiretroviral treatment. Currently, there are no effective analgesics for relieving it; thus, there is an urgent need to develop novel treatments for neuropathic pain. Previously, we described and validated F11 cells as a model of DRG (dorsal root ganglia) neurons. In the current work, we employed F11 cells to identify regulators of antiretroviral-induced neuropathic pain combining functional and transcriptomic analysis. The antiretroviral zalcitabine (ddC) increased the excitability of differentiated F11 cells associated with calcium signaling without morphological changes in the neuronal phenotype, mimicking the observed increase of painful signaling in patients suffering from antiretroviral-induced neuropathic pain. Employing RNA sequencing, we observed that zalcitabine treatment upregulated genes related with oxidative stress and calcium homeostasis. The functional impact of the transcriptomic changes was explored, finding that the exposure to zalcitabine significantly increased intracellular oxidative stress and reduced store-operated calcium entry (SOCE). Because the functional and transcriptomic evidence points toward fundamental changes in calcium signaling and oxidative stress upon zalcitabine exposure, we identified that NAD(P)H quinone dehydrogenase and the sarcoplasmic/endoplasmic reticulum calcium ATPase 3 were involved in zalcitabine-induced hyperexcitability of F11 cells. Overexpression of those genes increases the calcium-elicited hyperexcitability response and reduces SOCE, as well as increases intracellular ROS levels. These data do not only mimic the effects of zalcitabine but also highlight the relevance of oxidative stress and of calcium-mediated signaling in antiretroviral-induced hyperexcitability of sensory neurons, shedding light on new therapeutic targets for antiviral-induced neuropathic pain.

Learn More >

Persistent exposure to Δ9- tetrahydrocannabinol during adolescence does not affect nociceptive responding in adult mice.

Evidence suggests that Δ-tetrahydrocannabinol (Δ-THC), the intoxicating component of cannabis, may cause enduring changes in the structure and function of adolescent brain circuits implicated in nociceptive responding. Yet, whether such changes might persistently disrupt nociceptive behaviors remains unknown. In the present study, we subjected C57BL6/J mice of both sexes to once-daily injections of Δ-THC (5 mg-kg, intraperitoneal) or vehicle throughout adolescence (PND 30-43) and, when the animals had reached adulthood (PND 70), assessed nociceptive behavior using the formalin and chronic constriction injury (CCI) tests. We also investigated, using the tail immersion test, the antinociceptive effects of morphine and the development of tolerance to such effects. The results show that adolescent Δ-THC exposure does not significantly impair nociceptive responding or morphine-related antinociception and tolerance. The findings suggest that frequent exposure to a moderate dose of Δ-THC during adolescence does not permanently alter nociceptive circuits in male or female mice. The endocannabinoid system serves critical functions in the central and peripheral nervous systems, including regulation of pain, and can be modified by prolonged exposure to the intoxicating constituent of cannabis, Δ-tetrahydrocannabinol (Δ-THC). This raises the possibility that regular use of Δ-THC-containing cannabis during adolescence might cause changes in nociception that persist into adulthood. We found that frequent early-life exposure to a moderate dose of Δ-THC does not permanently alter nociceptive function in male or female mice.

Learn More >

The voltage-gated proton channel Hv1 promotes microglia-astrocyte communication and neuropathic pain after peripheral nerve injury.

Activation of spinal cord microglia contributes to the development of peripheral nerve injury-induced neuropathic pain. However, the molecular mechanisms underlying microglial function in neuropathic pain are not fully understood. We identified that the voltage-gated proton channel Hv1, which is functionally expressed in spinal microglia, was significantly increased after spinal nerve transection (SNT). Hv1 mediated voltage-gated proton currents in spinal microglia and mice lacking Hv1 (Hv1 KO) display attenuated pain hypersensitivities after SNT compared with wildtype (WT) mice. In addition, microglial production of reactive oxygen species (ROS) and subsequent astrocyte activation in the spinal cord was reduced in Hv1 KO mice after SNT. Cytokine screening and immunostaining further revealed that IFN-γ expression was compromised in spinal astrocytes in Hv1 KO mice. These results demonstrate that Hv1 proton channel contributes to microglial ROS production, astrocyte activation, IFN-γ upregulation, and subsequent pain hypersensitivities after SNT. This study suggests Hv1-dependent microglia-astrocyte communication in pain hypersensitivities and identifies Hv1 as a novel therapeutic target for alleviating neuropathic pain.

Learn More >

Possible Involvement of Type 2 Cytokines in Alloknesis in Mouse Models of Menopause and Dry Skin.

Alloknesis, an abnormal itch sensation induced by innocuous stimuli, is a key phenomenon in the vicious itch-scratch cycle in patients with atopic dermatitis. Dry skin and pruritus, including alloknesis, are major health problems in peri- and post-menopausal women. We recently reported permeability barrier dysfunction in ovariectomised (OVX) mice-a model of menopause-and found that the dysfunction was related to dry skin. However, the mechanism of the itch remains unknown. Therefore, we examined touch- and pruritogen-evoked alloknesis and epidermal innervation in OVX mice and acetone, diethyl ether, and water (AEW)-treated mice, for the experimental dry skin model. Both alloknesis and epidermal innervation were comparable in OVX and AEW mice. Neutralising antibodies against IL-4 and IL-13 inhibited alloknesis in both OVX and AEW mice as early as 30 min after intradermal administration. Comparable values close to the measurement limit of IL-4 were found in the skin of HRT and Sham mice as well as AEW and the control mice, but the levels of IL-4 were within the measurement limit in OVX mice. We could not detect mRNAs of IL-4 or IL-13 in any groups of mice. On the other hand, the number of eosinophils and basophils was increased in OVX and AEW mice. These results suggest that impaired barrier function in cooperation with type 2 cytokines derived from eosinophils and basophils in the skin or with endogenous type 2 cytokine may trigger the development of alloknesis, and thus, these cytokines could be a therapeutic target for sensitive skin.

Learn More >

Voluntary exercise blocks ongoing pain and diminishes bone remodeling while sparing protective mechanical pain in a rat model of advanced osteoarthritis pain.

Exercise is the most common treatment recommended by health care providers for treatment of musculoskeletal pain. We examined whether voluntary running wheel exercise improves pain and bone remodeling in rats with monosodium iodoacetate (MIA)-induced unilateral knee joint pain. During acquisition of wheel running prior to OA treatment, rats separated into two groups characterized by either high or low levels of voluntary wheel running as indicated by distance and peak speed. Following induction of knee joint OA, all rats showed diminished voluntary wheel running throughout the study. Voluntary wheel running failed to alter evoked nociceptive responses evaluated as weight asymmetry or hindpaw tactile thresholds at any time-point of the study. In contrast, relief of ongoing pain was demonstrated by conditioned place preference produced by lidocaine injection into the MIA-treated knee in high but not low running rats. Both high and low voluntary runners showed diminished trabecular bone loss compared to sedentary controls. These observations indicate that both high and low intensity exercise is beneficial in protecting against bone remodeling in advanced OA. The data suggest that similar to clinical observation, bone remodeling does not correlate with pain. Additionally, these results suggest that higher intensity exercise may relieve persistent ongoing OA pain while maintaining movement-evoked nociception. The relief of ongoing pain can potentially offer significant improvement in quality of life while preservation of responses to movement-evoked pain may be especially important in protecting the joint from damage due to overuse.

Learn More >

MiR-135-5p Alleviates Bone Cancer Pain by Regulating Astrocyte-Mediated Neuroinflammation in Spinal Cord through JAK2/STAT3 Signaling Pathway.

Bone cancer pain (BCP) was associated with microRNA dysregulation. In this study, we intended to clarify the potential role of miR-135-5p in a BCP mouse model, which was established by tumor cell implantation (TCI) in the medullary cavity of the mouse femur. The BCP-related behaviors were tested, including the paw withdrawal mechanical threshold (PWMT) and number of spontaneous flinches (NSF). The miRNA expression profiles in astrocytes of the sham and tumor groups were compared, and miRNA microarray and quantitative real-time PCR (qRT-PCR) assays confirmed that the amount of expression of miR-135-5p was significantly decreased in astrocytes of the tumor group. Gain- and loss-of-function studies showed that miR-135-5p could inhibit astrocyte activation and inflammation cytokine (TNF-α and IL-1β) expression. The relation between miR-135-5p and JAK2 was detected by bioinformatic analysis and dual luciferase reporter gene assay. By conducting in vitro experiments, it was shown that the miR-135-5P mimics lowered the level of JAK2/STAT3 proteins and inflammatory factors in astrocytes. Moreover, in vivo analysis on BCP mice model indicated that the miR-135-5p agonist could sufficiently increase PWMT and decrease NSF. Meanwhile, reduced activation of astrocytes in the spinal cord, as well as decreased expression of JAK2/STAT3 and inflammatory mediators, were found after miR-135-5p agonist treatment. Collectively, the results showed that miR-135-5p could potentially reduce BCP in mice through inhibiting astrocyte-mediated neuroinflammation and blocking of the JAK2/STAT3 signaling pathway, indicating that the upregulation of miR-135-5P could be a therapeutic focus in BCP treatment.

Learn More >

Identification of a neural basis for cold acclimation in larvae.

Low temperatures can be fatal to insects, but many species have evolved the ability to cold acclimate, thereby increasing their cold tolerance. It has been previously shown that larvae perform cold-evoked behaviors under the control of noxious cold-sensing neurons (nociceptors), but it is unknown how the nervous system might participate in cold tolerance. Herein, we describe cold-nociceptive behavior among 11 drosophilid species; we find that the predominant cold-evoked larval response is a head-to-tail contraction behavior, which is likely inherited from a common ancestor, but is unlikely to be protective. We therefore tested the hypothesis that cold nociception functions to protect larvae by triggering cold acclimation. We found that Class III nociceptors are sensitized by and critical to cold acclimation and that cold acclimation can be optogenetically evoked, cold. Collectively, these findings demonstrate that cold nociception constitutes a peripheral neural basis for larval cold acclimation.

Learn More >

Neuronal Dual Leucine Zipper Kinase Mediates Inflammatory and Nociceptive Responses in Cyclophosphamide-Induced Cystitis.

Interstitial cystitis is associated with neurogenic inflammation and neuropathic bladder pain. Dual leucine zipper kinase (DLK) expressed in sensory neurons is implicated in neuropathic pain. We hypothesized that neuronal DLK is involved in the regulation of inflammation and nociceptive behavior in cystitis. Mice deficient in DLK in sensory neurons (cKO) were generated by crossing DLK floxed mice with mice expressing Cre recombinase under Advillin promoter. Cystitis was induced by cyclophosphamide (CYP) administration in mice. Nociceptive behavior, bladder inflammation, and pathology were assessed following cystitis induction in control and cKO mice. The role of DLK in CYP-induced cystitis was further determined by pharmacological inhibition of DLK with GNE-3511. Deletion of neuronal DLK attenuated CYP-induced pain-like nociceptive behavior and suppressed histamine release from mast cells, neuronal activation in the spinal cord, and bladder pathology. Mice deficient in neuronal DLK also showed reduced inflammation induced by CYP and reduced c-Jun activation in the dorsal root ganglia (DRG). Pharmacological inhibition of DLK with GNE-3511 recapitulated the effects of neuronal DLK depletion in CYP treatment mice. Our study suggests that DLK is a potential target for the treatment of neuropathic pain and bladder pathology associated with cystitis.

Learn More >

Focal Laser Stimulation of Fly Nociceptors Activates Distinct Axonal and Dendritic Ca Signals.

Drosophila Class IV neurons are polymodal nociceptors that detect noxious mechanical, thermal, optical and chemical stimuli. Escape behaviors in response to attacks by parasitoid wasps are dependent on Class IV cells, whose highly branched dendritic arbors form a fine meshwork that is thought to enable detection of the wasp's needle-like ovipositor barb. To understand how mechanical stimuli trigger cellular responses, we used a focused 405-nm laser to create highly local lesions to probe the precise position needed to evoke responses. By imaging calcium signals in dendrites, axons, and soma in response to stimuli of varying positions, intensities and spatial profiles, we discovered that there are two distinct nociceptive pathways. Direct stimulation to dendrites (the contact pathway) produces calcium responses in axons, dendrites and the cell body whereas stimulation adjacent to the dendrite (the non-contact pathway) produces calcium responses in the axons only. We interpret the non-contact pathway as damage to adjacent cells releasing diffusible molecules that act on the dendrites. Axonal responses have higher sensitivities and shorter latencies. In contrast, dendritic responses have lower sensitivities and longer latencies. Stimulation of finer, distal dendrites leads to smaller responses than stimulation of coarser, proximal dendrites, as expected if the contact response depends on the geometric overlap of the laser profile and the dendrite diameter. Because the axon signals to the CNS to trigger escape behaviors, we propose that the density of the dendritic meshwork is high not only to enable direct contact with the ovipositor, but also to enable neuronal activation via diffusing signals from damaged surrounding cells. Dendritic contact evokes responses throughout the dendritic arbor, even to regions distant and distal from the stimulus. These dendrite-wide calcium signals may facilitate hyperalgesia or cellular morphological changes following dendritic damage.

Learn More >

Search