I am a
Home I AM A Search Login

Animal Studies

Share this

Plasticity of neuronal excitability and synaptic balance in the anterior nucleus of paraventricular thalamus after nerve injury.

The anterior nucleus of the paraventricular thalamus (aPVT) integrates various synaptic inputs and conveys information to the downstream brain regions for arousal and pain regulation. Recent studies have indicated that the PVT plays a crucial role in the regulation of chronic pain, but the plasticity mechanism of neuronal excitability and synaptic inputs for aPVT neurons in neuropathic pain remains unclear. Here, we report that spinal nerve ligation (SNL) significantly increased the neuronal excitability and reset the excitatory/inhibitory (E/I) synaptic inputs ratio of aPVT neurons in mice. SNL significantly increased the membrane input resistance, firing frequency, and the half-width of action potential. Additionally, SNL enlarged the area of afterdepolarization and prolonged the rebound low-threshold spike following a hyperpolarized current injection. Further results indicate that an inwardly rectifying current density was decreased in SNL animals. SNL also decreased the amplitude, but not the frequency of spontaneous excitatory postsynaptic currents (sEPSCs), nor the amplitude or frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) of aPVT neurons. Moreover, SNL disrupted the E/I synaptic ratio, caused a decrease in weighted tau and half-width of averaged sIPSCs, but did not change these physiological properties of averaged sEPSCs. Finally, pharmacological activation of the GABA receptor at aPVT could effective relieve SNL-induced mechanical allodynia in mice. These results reveal the plasticity of intrinsic neuronal excitability and E/I synaptic balance in the aPVT neurons after nerve injury and it may play an important role in the development of pain sensitization.

Learn More >

Huc-MSCs-derived exosomes attenuate inflammatory pain by regulating microglia pyroptosis and autophagy via the miR-146a-5p/TRAF6 axis.

Chronic inflammatory pain significantly reduces the quality of life and lacks effective interventions. In recent years, human umbilical cord mesenchymal stem cells (huc-MSCs)-derived exosomes have been used to relieve neuropathic pain and other inflammatory diseases as a promising cell-free therapeutic strategy. However, the therapeutic value of huc-MSCs-derived exosomes in complete Freund's adjuvant (CFA)-induced inflammatory pain remains to be confirmed. In this study, we investigated the therapeutic effect and related mechanisms of huc-MSCs-derived exosomes in a chronic inflammatory pain model.

Learn More >

Controlled activation of cortical astrocytes modulates neuropathic pain-like behaviour.

Chronic pain is a major public health problem that currently lacks effective treatment options. Here, a method that can modulate chronic pain-like behaviour induced by nerve injury in mice is described. By combining a transient nerve block to inhibit noxious afferent input from injured peripheral nerves, with concurrent activation of astrocytes in the somatosensory cortex (S1) by either low intensity transcranial direct current stimulation (tDCS) or via the chemogenetic DREADD system, we could reverse allodynia-like behaviour previously established by partial sciatic nerve ligation (PSL). Such activation of astrocytes initiated spine plasticity to reduce those synapses formed shortly after PSL. This reversal from allodynia-like behaviour persisted well beyond the active treatment period. Thus, our study demonstrates a robust and potentially translational approach for modulating pain, that capitalizes on the interplay between noxious afferents, sensitized central neuronal circuits, and astrocyte-activation induced synaptic plasticity.

Learn More >

KCl-induced repetitive cortical spreading depression inhibiting trigeminal neuronal firing is mediated by 5-HT and opioid receptors.

We aimed to examine the effects of repetitive cortical spreading depression on the responses of nociceptive trigeminal neurons with dural afferents and characterize the role of 5-HT and opioid receptors.

Learn More >

Miswiring of Merkel cell and pruriceptive C fiber drives the itch-scratch cycle.

Itch sensation provokes the scratch reflex to protect us from harmful stimuli in the skin. Although scratching transiently relieves acute itch through activation of mechanoreceptors, it propagates the vicious itch-scratch cycle in chronic itch by further aggravating itch over time. Although well recognized clinically, the peripheral mechanisms underlying the itch-scratch cycle remain poorly understood. Here, we show that mechanical stimulation of the skin results in activation of the Piezo2 channels on Merkel cells that pathologically promotes spontaneous itch in experimental dry skin. Three-dimensional reconstruction and immunoelectron microscopy revealed structural alteration of MRGPRA3 pruriceptor nerve endings directed toward Merkel cells in the setting of dry skin. Our results uncover a functional miswiring mechanism under pathologic conditions, resulting in touch receptors triggering the firing of pruriceptors in the skin to drive the itch-scratch cycle.

Learn More >

Mechanosensitive Ion Channel TMEM63A Gangs Up with Local Macrophages to Modulate Chronic Post-amputation Pain.

Post-amputation pain causes great suffering to amputees, but still no effective drugs are available due to its elusive mechanisms. Our previous clinical studies found that surgical removal or radiofrequency treatment of the neuroma at the axotomized nerve stump effectively relieves the phantom pain afflicting patients after amputation. This indicated an essential role of the residual nerve stump in the formation of chronic post-amputation pain (CPAP). However, the molecular mechanism by which the residual nerve stump or neuroma is involved and regulates CPAP is still a mystery. In this study, we found that nociceptors expressed the mechanosensitive ion channel TMEM63A and macrophages infiltrated into the dorsal root ganglion (DRG) neurons worked synergistically to promote CPAP. Histology and qRT-PCR showed that TMEM63A was mainly expressed in mechanical pain-producing non-peptidergic nociceptors in the DRG, and the expression of TMEM63A increased significantly both in the neuroma from amputated patients and the DRG in a mouse model of tibial nerve transfer (TNT). Behavioral tests showed that the mechanical, heat, and cold sensitivity were not affected in the Tmem63a mice in the naïve state, suggesting the basal pain was not affected. In the inflammatory and post-amputation state, the mechanical allodynia but not the heat hyperalgesia or cold allodynia was significantly decreased in Tmem63a mice. Further study showed that there was severe neuronal injury and macrophage infiltration in the DRG, tibial nerve, residual stump, and the neuroma-like structure of the TNT mouse model, Consistent with this, expression of the pro-inflammatory cytokines TNF-α, IL-6, and IL-1β all increased dramatically in the DRG. Interestingly, the deletion of Tmem63a significantly reduced the macrophage infiltration in the DRG but not in the tibial nerve stump. Furthermore, the ablation of macrophages significantly reduced both the expression of Tmem63a and the mechanical allodynia in the TNT mouse model, indicating an interaction between nociceptors and macrophages, and that these two factors gang up together to regulate the formation of CPAP. This provides a new insight into the mechanisms underlying CPAP and potential drug targets its treatment.

Learn More >

TAK-242 treatment and its effect on mechanical properties and gene expression associated with IVD degeneration in SPARC-null mice.

Intervertebral disc (IVD) degeneration is accompanied by mechanical and gene expression changes to IVDs. SPARC-null mice display accelerated IVD degeneration, and treatment with (toll-like receptor 4 (TLR4) inhibitor) TAK-242 decreases proinflammatory cytokines and pain. This study examined if chronic TAK-242 treatment impacts mechanical properties and gene expression associated with IVD degeneration in SPARC-null mice.

Learn More >

Multi-chemokine receptor antagonist RAP-103 inhibits opioid-derived respiratory depression, reduces opioid reinforcement and physical dependence, and normalizes opioid-induced dysregulation of mesolimbic chemokine receptors in rats.

Chemokine-opioid crosstalk is a physiological crossroads for influencing therapeutic and adverse effects of opioids. Activation of chemokine receptors, especially CCR2, CCR5 and CXCR4, reduces opioid-induced analgesia by desensitizing OPRM1 receptors. Chemokine receptor antagonists (CRAs) enhance opioid analgesia, but knowledge about how CRAs impact adverse opioid effects remains limited. We examined effects of RAP-103, a multi-CRA orally active peptide analog of "DAPTA", on opioid-derived dependence, reinforcement, and respiratory depression in male rats and on changes in chemokine and OPRM1 (µ opioid) receptor levels in mesolimbic substrates during opioid abstinence. In rats exposed to chronic morphine (75 mg pellet x 7 d), daily RAP-103 (1 mg/kg, IP) treatment reduced the severity of naloxone-precipitated withdrawal responses. For self-administration (SA) studies, RAP-103 (1 mg/kg, IP) reduced heroin acquisition (0.1 mg/kg/inf) and reinforcing efficacy (assessed by motivation on a progressive-ratio reinforcement schedule) but did not impact sucrose intake. RAP-103 (1-3 mg/kg, IP) also normalized the deficits in oxygen saturation and enhancement of respiratory rate caused by morphine (5 mg/kg, SC) exposure. Abstinence from chronic morphine elicited brain-region specific changes in chemokine receptor protein levels. CCR2 and CXCR4 were increased in the ventral tegmental area (VTA), whereas CCR2 and CCR5 were reduced in the nucleus accumbens (NAC). Effects of RAP-103 (1 mg/kg, IP) were focused in the NAC, where it normalized morphine-induced deficits in CCR2 and CCR5. These results identify CRAs as potential biphasic function opioid signaling modulators to enhance opioid analgesia and inhibit opioid-derived dependence and respiratory depression.

Learn More >

Reactive Oxygen Species Contributes to Type 2 Diabetic Neuropathic Pain via the Thioredoxin-Interacting Protein-NOD-Like Receptor Protein 3-N-Methyl-D-Aspartic Acid Receptor 2B Pathway.

The number of patients with diabetic neuropathic pain (DNP) continues to increase, but available treatments are limited. This study aimed to examine the influence of reactive oxygen species (ROS)-thioredoxin-interacting protein (TXNIP)-NOD-like receptor protein 3 (NLRP3)-N-methyl-D-aspartic acid receptor 2B (NR2B) pathway on type 2 DNP.

Learn More >

Sound induces analgesia through corticothalamic circuits.

Sound-including music and noise-can relieve pain in humans, but the underlying neural mechanisms remain unknown. We discovered that analgesic effects of sound depended on a low (5-decibel) signal-to-noise ratio (SNR) relative to ambient noise in mice. Viral tracing, microendoscopic calcium imaging, and multitetrode recordings in freely moving mice showed that low-SNR sounds inhibited glutamatergic inputs from the auditory cortex (ACx) to the thalamic posterior (PO) and ventral posterior (VP) nuclei. Optogenetic or chemogenetic inhibition of the ACx→PO and ACx→VP circuits mimicked the low-SNR sound-induced analgesia in inflamed hindpaws and forepaws, respectively. Artificial activation of these two circuits abolished the sound-induced analgesia. Our study reveals the corticothalamic circuits underlying sound-promoted analgesia by deciphering the role of the auditory system in pain processing.

Learn More >

Search