I am a
Home I AM A Search Login

Animal Studies

Share this

Ginsenoside Rh2 Ameliorates Neuropathic Pain by inhibition of the miRNA21-TLR8-MAPK axis.

Ginsenoside Rh2 is one of the major bioactive ginsenosides in Panax ginseng. Although Rh2 is known to enhance immune cells activity for treatment of cancer, its anti-inflammatory and neuroprotective effects have yet to be determined. In this study, we investigated the effects of Rh2 on spared nerve injury (SNI)-induced neuropathic pain and elucidated the potential mechanisms. We found that various doses of Rh2 intrathecal injection dose-dependently attenuated SNI-induced mechanical allodynia and thermal hyperalgesia. Rh2 also inhibited microglia and astrocyte activation in the spinal cord of a murine SNI model. Rh2 treatment inhibited SNI-induced increase of proinflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-1 and IL-6. Expression of miRNA-21, an endogenous ligand of Toll like receptor (TLR)8 was also decreased. Rh2 treatment blocked the mitogen-activated protein kinase (MAPK) signaling pathway by inhibiting of phosphorylated extracellular signal-regulated kinase expression. Finally, intrathecal injection of TLR8 agonist VTX-2337 reversed the analgesic effect of Rh2. These results indicated that Rh2 relieved SNI-induced neuropathic pain via inhibiting the miRNA-21-TLR8-MAPK signaling pathway, thus providing a potential application of Rh2 in pain therapy.

Learn More >

Development of a Nanoformulation for Oral Protein Administration: Characterization and Preclinical Orofacial Antinociceptive Effect.

Nanoencapsulation is a valid alternative for the oral administration of peptide drugs and proteins, as nanoparticles protect them from proteolytic degradation in the gastrointestinal tract and promote the absorption of these macromolecules. The orofacial antinociceptive effect of frutalin (FTL), through the intraperitoneal route, has already been proven. This study aimed to develop, characterize, and evaluate the orofacial antinociceptive activity of an oral formulation containing FTL in acute and neuropathic preclinical tests. Nanoencapsulated FTL was administered by oral route. The acute nociceptive behavior was induced by administering capsaicin to the upper lip and NaCl to the right cornea. The nociceptive behavior was also induced by formalin injected into the temporomandibular joint. The neuropathic pain model involved infraorbital nerve transection (IONX), which induced mechanical hypersensitivity and was assessed by von Frey stimulation. Trpv1 gene expression was analyzed in the trigeminal ganglion. The analyzed sample did not show any cytotoxicity; 52.2% of the FTL was encapsulated, and the size of the nanocapsule was less than 200 nm, the polydispersion was 0.361, and the zeta potential was - 5.87 and - 12.8 mV, with and without FTL, respectively. Nanoencapsulated FTL administered by oral route had an orofacial antinociceptive effect in acute and neuropathic rodent models. The antinociceptive effect of FTL was prevented by ruthenium red, but not by camphor. FTL reduced Trpv1 gene expression. FTL promotes orofacial antinociception, probably due to the antagonism of TRPV1 channels, and the nanoformulation represents an effective method for the oral administration of this protein. HIGHLIGHTS: • Nanoformulation for oral protein administration. • Nanocapsule containing FTL prevents orofacial nociceptive acute and neuropathic pain. • Frutalin promotes orofacial antinociception behavior antagonism of TRPV1 channels.

Learn More >

Polyphenols from Fruits Anti-Inflammatory, Analgesic, and Antioxidant Capacity in Freund’s Adjuvant-Induced Arthritic Rat Model.

(L.) Wigth & Arn. (DC) is widely used in traditional medicine against several inflammatory diseases, especially rheumatoid arthritis, because of its antioxidant and anti-inflammatory effects. This study aimed to characterize the polyphenol-rich DC fruit extracts and investigate the analgesic, anti-inflammatory, and antioxidant effects in a rat inflammation model induced by complete Freund's adjuvant (CFA). Water and ethanolic extracts were characterized using liquid chromatography coupled with mass spectrometry (LC-MS), Fourier-transform infrared (FTIR) spectroscopy, and gas chromatography coupled with mass spectrometry (GC-MS). The polyphenol-rich extracts were administered in three different concentrations for 30 days. Pain threshold, thermal hyperalgesia, edema, and serum biomarkers specific to inflammatory processes or oxidative stress were evaluated. Both extracts were rich in polyphenolic compounds, mainly flavan-3-ols, proanthocyanidins, and flavone glycosides, which had important in vitro antioxidant capacity. DC fruit extracts administration had the maximum antinociceptive and anti-inflammatory effects after one day since the CFA injection and showed promising results for long-term use as well. The measurement of pro-inflammatory cytokines, cortisol, and oxidative stress parameters showed that DC extracts significantly reduced these parameters, being dose and extract-type dependent. These results showed potential anti-inflammatory, analgesic, and antioxidative properties and revealed the necessity of using a standardized polyphenolic DC extract to avoid result variability.

Learn More >

Indication of central sensitization in chronic neuropathic pain after spinal cord injury.

Central sensitization is considered a key mechanism underlying neuropathic pain (NP) after spinal cord injury (SCI).

Learn More >

Inhibition of P2X7 receptors by Lu AF27139 diminishes colonic hypersensitivity and CNS prostanoid levels in a rat model of visceral pain.

Visceral pain is a prominent feature of various gastrointestinal diseases. The P2X7 receptor is expressed by multiple cell types including dorsal root ganglion satellite glial cells, macrophages, and spinal microglia, all of which have been implicated in nociceptive sensitization. We have used the selective and CNS penetrant P2X7 receptor antagonist Lu AF27139 to explore this receptor's role in distinct rat models of inflammatory and visceral hypersensitivity. Rats injected with CFA in the hindpaw displayed a marked reduction in hindpaw mechanical threshold, which was dose-dependently reversed by Lu AF27139 (3-30 mg/kg, p.o.). In rats injected with TNBS in the proximal colon, the colorectal distension threshold measured distally was significantly lower than sham treated rats at 7 days post-injection (P < 0.001), indicative of a marked central sensitization. Colonic hypersensitivity was also reversed by Lu AF27139 (10-100 mg/kg) and by the κ-opioid receptor agonist U-50,488H (3 mg/kg, s.c.). Moreover, both Lu AF27139 and U-50,488H prevented a TNBS-induced increase in spinal and brain levels of PGE2 and LTB4, as well as an increase in brain levels of PGF2α and TXB2. Lu AF27139 was well tolerated as revealed by a lack of significant effect on rotarod motor function and coordination at all doses tested up to 300 mg/kg. Thus, P2X7 receptor antagonism is efficacious in a rat model of visceral pain, via a mechanism which potentially involves attenuation of microglial function within spinal and/or supraspinal pain circuits, albeit a peripheral site of action cannot be excluded.

Learn More >

The Acute Antiallodynic Effect of Tolperisone in Rat Neuropathic Pain and Evaluation of Its Mechanism of Action.

Current treatment approaches to manage neuropathic pain have a slow onset and their use is largely hampered by side-effects, thus there is a significant need for finding new medications. Tolperisone, a centrally acting muscle relaxant with a favorable side effect profile, has been reported to affect ion channels, which are targets for current first-line medications in neuropathic pain. Our aim was to explore its antinociceptive potency in rats developing neuropathic pain evoked by partial sciatic nerve ligation and the mechanisms involved. Acute oral tolperisone restores both the decreased paw pressure threshold and the elevated glutamate level in cerebrospinal fluid in neuropathic rats. These effects were comparable to those of pregabalin, a first-line medication in neuropathy. Tolperisone also inhibits release of glutamate from rat brain synaptosomes primarily by blockade of voltage-dependent sodium channels, although inhibition of calcium channels may also be involved at higher concentrations. However, pregabalin fails to affect glutamate release under our present conditions, indicating a different mechanism of action. These results lay the foundation of the avenue for repurposing tolperisone as an analgesic drug to relieve neuropathic pain.

Learn More >

Evaluation of a polymer coated nanoparticle cream formulation of resiniferatoxin for the treatment of painful diabetic peripheral neuropathy.

Painful Diabetic Peripheral Neuropathy (PDPN) is one of the major complications of diabetes. Currently, centrally acting drugs and topical analgesics are used for treating PDPN. These drugs have adverse effects, some are ineffective and treatment with opioids is associated with use dependence and addiction. Recent research indicates that Transient Receptor Potential Vanilloid 1 (TRPV1) expressed in the peripheral sensory nerve terminals is an emerging target to treat pain associated with PDPN. Blocking TRPV1 ion channel using specific antagonists, although effective as an analgesic, but induced hyperthermia in clinical trials. However, TRPV1 agonists are useful to treat pain by virtue of their ability to cause Ca2+ influx and subsequently leading to nerve terminal desensitization. Here, we report the effectiveness of an ultra-potent TRPV1 agonist, resiniferatoxin (RTX) nanoparticle in a topical formulation (RTX-cream; RESINIZINTM) that alleviates pain associated with DPN in animal models of diabetes. RTX causes nerve terminal depolarization block in the short-term, which prevents pain during application and leading to nerve terminal desensitization/depletion in the long-term resulting in long lasting pain relief. Application of RTX cream to the hind limbs suppresses thermal hyperalgesia in streptozotocin (STZ)-induced diabetic rats and mini-pigs without any adverse effects as compared to capsaicin at therapeutic doses, which induces intense pain during application. RTX cream also decreases the expression of TRPV1 in the peripheral nerve endings and suppresses TRPV1-mediated CGRP release in the skin samples of diabetic rats and mini-pigs. Our preclinical data confirm that RTX topical formulation is an effective treatment option for PDPN.

Learn More >

Characterisation of deep dorsal horn projection neurons in the spinal cord of the Phox2a::Cre mouse line.

Projection neurons belonging to the anterolateral system (ALS) underlie the perception of pain, skin temperature and itch. Many ALS cells are located in laminae III-V of the dorsal horn and the adjacent lateral white matter. However, relatively little is known about the excitatory synaptic input to these deep ALS cells, and therefore about their engagement with the neuronal circuitry of the region. We have used a recently developed mouse line, Phox2a::Cre, to investigate a population of deep dorsal horn ALS neurons known as "antenna cells", which are characterised by dense innervation from peptidergic nociceptors, and to compare these with other ALS cells in the deep dorsal horn and lateral white matter. We show that these two classes differ, both in the density of excitatory synapses, and in the source of input at these synapses. Peptidergic nociceptors account for around two-thirds of the excitatory synapses on the antenna cells, but for only a small proportion of the input to the non-antenna cells. Conversely, boutons with high levels of VGLUT2, which are likely to originate mainly from glutamatergic spinal neurons, account for only ∼5% of the excitatory synapses on antenna cells, but for a much larger proportion of the input to the non-antenna cells. VGLUT1 is expressed by myelinated low-threshold mechanoreceptors and corticospinal axons, and these innervate both antenna and non-antenna cells. However, the density of VGLUT1 input to the non-antenna cells is highly variable, consistent with the view that these neurons are functionally heterogeneous.

Learn More >

Increased nociceptive sensitivity is associated with periodontal inflammation and expression of chronic pain genes in gingival tissues of male rats.

This study aimed to evaluate the inflammatory response, hyperpolarization-activated cyclic nucleotide-gated 2 (HCN2), and voltage-gated potassium (Kv) 9.1 channel expression in rats with paclitaxel-induced neuropathic pain-like behavior.

Learn More >

Targeting the tamoxifen receptor within sodium channels to block osteoarthritic pain.

Voltage-gated sodium channels (Na) in nociceptive neurons initiate action potentials required for transmission of aberrant painful stimuli observed in osteoarthritis (OA). Targeting Na subtypes with drugs to produce analgesic effects for OA pain management is a developing therapeutic area. Previously, we determined the receptor site for the tamoxifen analog N-desmethyltamoxifen (ND-Tam) within a prokaryotic Na. Here, we report the pharmacology of ND-Tam against eukaryotic Nas natively expressed in nociceptive neurons. ND-Tam and analogs occupy two conserved intracellular receptor sites in domains II and IV of Na1.7 to block ion entry using a "bind and plug" mechanism. We find that ND-Tam inhibition of the sodium current is state dependent, conferring a potent frequency- and voltage-dependent block of hyperexcitable nociceptive neuron action potentials implicated in OA pain. When evaluated using a mouse OA pain model, ND-Tam has long-lasting efficacy, which supports the potential of repurposing ND-Tam analogs as Na antagonists for OA pain management.

Learn More >

Search