I am a
Home I AM A Search Login

Papers of the Week


Papers: 20 Aug 2022 - 26 Aug 2022


Animal Studies


2022 Aug 24


Purinergic Signal

Inhibition of P2X7 receptors by Lu AF27139 diminishes colonic hypersensitivity and CNS prostanoid levels in a rat model of visceral pain.

Authors

Staal RGW, Gandhi A, Zhou H, Cajina M, Jacobsen A-M, Hestehave S, Hopper A, Poda S, Chandresana G, Zorn SH, Campbell B, Segerdahl M, Mӧller T, Munro G
Purinergic Signal. 2022 Aug 24.
PMID: 36001278.

Abstract

Visceral pain is a prominent feature of various gastrointestinal diseases. The P2X7 receptor is expressed by multiple cell types including dorsal root ganglion satellite glial cells, macrophages, and spinal microglia, all of which have been implicated in nociceptive sensitization. We have used the selective and CNS penetrant P2X7 receptor antagonist Lu AF27139 to explore this receptor's role in distinct rat models of inflammatory and visceral hypersensitivity. Rats injected with CFA in the hindpaw displayed a marked reduction in hindpaw mechanical threshold, which was dose-dependently reversed by Lu AF27139 (3-30 mg/kg, p.o.). In rats injected with TNBS in the proximal colon, the colorectal distension threshold measured distally was significantly lower than sham treated rats at 7 days post-injection (P < 0.001), indicative of a marked central sensitization. Colonic hypersensitivity was also reversed by Lu AF27139 (10-100 mg/kg) and by the κ-opioid receptor agonist U-50,488H (3 mg/kg, s.c.). Moreover, both Lu AF27139 and U-50,488H prevented a TNBS-induced increase in spinal and brain levels of PGE2 and LTB4, as well as an increase in brain levels of PGF2α and TXB2. Lu AF27139 was well tolerated as revealed by a lack of significant effect on rotarod motor function and coordination at all doses tested up to 300 mg/kg. Thus, P2X7 receptor antagonism is efficacious in a rat model of visceral pain, via a mechanism which potentially involves attenuation of microglial function within spinal and/or supraspinal pain circuits, albeit a peripheral site of action cannot be excluded.