I am a
Home I AM A Search Login

Rejected

Share this

Deletion of Acid-Sensing Ion Channel 3 Relieves the Late Phase of Neuropathic Pain by Preventing Neuron Degeneration and Promoting Neuron Repair.

Neuropathic pain is one type of chronic pain that occurs as a result of a lesion or disease to the somatosensory nervous system. Chronic excessive inflammatory response after nerve injury may contribute to the maintenance of persistent pain. Although the role of inflammatory mediators and cytokines in mediating allodynia and hyperalgesia has been extensively studied, the detailed mechanisms of persistent pain or whether the interactions between neurons, glia and immune cells are essential for maintenance of the chronic state have not been completely elucidated. ASIC3, a voltage-insensitive, proton-gated cation channel, is the most essential pH sensor for pain perception. ASIC3 gene expression is increased in dorsal root ganglion neurons after inflammation and nerve injury and ASIC3 is involved in macrophage maturation. ASIC currents are increased after nerve injury. However, whether prolonged hyperalgesia induced by the nerve injury requires ASIC3 and whether ASIC3 regulates neurons, immune cells or glial cells to modulate neuropathic pain remains unknown. We established a model of chronic constriction injury of the sciatic nerve (CCI) in mice. CCI mice showed long-lasting mechanical allodynia and thermal hyperalgesia. CCI also caused long-term inflammation at the sciatic nerve and primary sensory neuron degeneration as well as increased satellite glial expression and ATF3 expression. ASIC3 deficiency shortened mechanical allodynia and attenuated thermal hyperalgesia. ASIC3 gene deletion shifted ATF3 expression from large to small neurons and altered the M1/M2 macrophage ratio, thereby preventing small neuron degeneration and relieved pain.

Learn More >

Protective Effects of ()-β-Caryophyllene (BCP) in Chronic Inflammation.

()-β-caryophyllene (BCP) is a bicyclic sesquiterpene widely distributed in the plant kingdom, where it contributes a unique aroma to essential oils and has a pivotal role in the survival and evolution of higher plants. Recent studies provided evidence for protective roles of BCP in animal cells, highlighting its possible use as a novel therapeutic tool. Experimental results show the ability of BCP to reduce pro-inflammatory mediators such as tumor necrosis factor-alfa (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), thus ameliorating chronic pathologies characterized by inflammation and oxidative stress, in particular metabolic and neurological diseases. Through the binding to CB2 cannabinoid receptors and the interaction with members of the family of peroxisome proliferator-activated receptors (PPARs), BCP shows beneficial effects on obesity, non-alcoholic fatty liver disease/nonalcoholic steatohepatitis (NAFLD/NASH) liver diseases, diabetes, cardiovascular diseases, pain and other nervous system disorders. This review describes the current knowledge on the biosynthesis and natural sources of BCP, and reviews its role and mechanisms of action in different inflammation-related metabolic and neurologic disorders.

Learn More >

“Old Drugs, New Tricks” – Local controlled drug release systems for treatment of degenerative joint disease.

Osteoarthritis (OA) and chronic low back pain (CLBP) caused by intervertebral disc (IVD) degeneration are joint diseases that have become major causes for loss of quality of life worldwide. Despite the unmet need, effective treatments other than invasive, and often ineffective, surgery are lacking. Systemic administration of drugs entails suboptimal local drug exposure in the articular joint and IVD. This review provides an overview of the potency of biomaterial-based drug delivery systems as novel treatment modality, with a focus on the biological effects of drug release systems that have reached translation at the level of in vivo models and relevant ex vivo models. These studies have shown encouraging results of biomaterial-based local delivery of several types of drugs, mostly inhibitors of inflammatory cytokines or other degenerative factors. Prevention of inflammation and degeneration and pain relief was achieved, although mainly in small animal models, with interventions applied at an early disease stage. Less convincing data were obtained with the delivery of regenerative factors. Multidisciplinary efforts towards tackling the discord between in vitro and in vivo release, combined with adaptations in the regulatory landscape may be needed to enhance safe and expeditious introduction of more and more effective controlled release-based treatments with the OA and CLBP patients.

Learn More >

Obstructive Sleep Apnea patients adhering to Continuous positive Airway Pressure: A randomized trial.

Excessive daytime sleepiness (EDS) in individuals with obstructive sleep apnea syndrome persisting despite good adherence to continuous positive airway pressure (CPAP) is a disabling condition. Pitolisant is a selective histamine H3-receptor antagonist with wake-promoting effects.

Learn More >

The antinuclear antibody dense fine speckled pattern and possible clinical associations: An indication of a proinflammatory microenvironment.

Indirect immunofluorescence (IIF) is the most prevalent screening antinuclear antibody test for systemic autoimmune rheumatic disease (SARD). Certain IIF patterns have known antibody and disease associations, but the dense fine speckled (ANA-DFS) pattern has no confirmed clinical associations. Our objective was to determine the prevalence of SARD among a group of ANA-DFS positive individuals and to identify final diagnoses among non-SARD individuals in order to determine possible clinical associations with the ANA-DFS pattern.

Learn More >

Morphine and myocardial ischaemia-reperfusion.

Coronary heart disease (CHD) is a cardiovascular disease with high mortality and disability worldwide. The main pathological manifestation of CHD is myocardial injury due to ischaemia-reperfusion, resulting in the death of cardiomyocytes (apoptosis and necrosis) and the occurrence of cardiac failure. Morphine is a nonselective opioid receptor agonist that has been commonly used for analgesia and to treat ischaemic heart disease. The present review focused on morphine-induced protection in an animal model of myocardial ischaemia-reperfusion and chronic heart failure and the effects of morphine on ST segment elevation myocardial infarction (STEMI) patients who underwent pre-primary percutaneous coronary intervention (pre-PPCI) or PPCI. The signalling pathways involved are also briefly described.

Learn More >

Structural basis of tropifexor as a potent and selective agonist of farnesoid X receptor.

Farnesoid X receptor (FXR) is considered as a potential target for the treatment of several liver disorders such as primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). Tropifexor is a highly potent and non-steroidal FXR agonist that has progressed into phase II clinical trials in patients with PBC. The clinical trials demonstrate that tropifexor improved serum markers of patients with liver diseases and lower side effect such as pruritus that might be implicated with TGR5 activation. However, the molecular mechanism of the potency and selectivity of tropifexor remains unclear. In this study, the binding affinity of FXR and tropifexor is measured by isothermal titration calorimetry (ITC) assays. The crystal structure of the FXR/tropifexor complex is determined at 2.7 Å resolution to explain the molecular mechanism of tropifexor bound to FXR-LBD. Structural comparison with other FXR/agonists structures reveals the conformational change in the FXR/tropifexor structure. Moreover the structural superposition of TGR5/tropifexor indicates that the steric hindrance between tropifexor and TGR5 might be a possible explanation for the impotency arises of tropifexor to TGR5. Overall, our analyses might provide an insight into the molecular mechanism of tropifexor binding to FXR-LBD and account for the high selectivity of tropifexor for FXR versus TGR5.

Learn More >

Suprascapular Neuropathy From Malpositioned Baseplate Screws in Primary Reverse Shoulder Arthroplasty: Two Case Reports.

Two patients presented to different surgeons complaining of persistent shoulder pain after reverse total shoulder arthroplasty. Workups for fracture, instability, and periprosthetic infection were negative. Advanced imaging, nerve conduction studies, and diagnostic injections localized symptoms to the suprascapular nerve. Revision arthroplasty with removal of the offending screws improved pain in both patients.

Learn More >

Identifying and Ranking Common COVID-19 Symptoms from Arabic Twitter.

A massive amount of COVID-19 related data is generated everyday by Twitter users. Self-reports of COVID-19 symptoms on Twitter can reveal a great deal about the disease and its prevalence in the community. In particular, self-reports can be used as a valuable resource to learn more about the common symptoms and whether their order of appearance differs among different groups in the community. With sufficient available data, this has the potential of developing a COVID-19 risk-assessment system that is tailored toward specific group of people.

Learn More >

Conjugation with Methylsulfonylmethane Improves Hyaluronic Acid Anti-Inflammatory Activity in a Hydrogen Peroxide-Exposed Tenocyte Culture In Vitro Model.

Rotator cuff tears (RCTs) and rotator cuff disease (RCD) are important causes of disability in middle-aged individuals affected by nontraumatic shoulder dysfunctions. Our previous studies have demonstrated that four different hyaluronic acid preparations (HAPs), including Artrosulfur hyaluronic acid (HA) (Alfakjn S.r.l., Garlasco, Italy), may exert a protective effect in human RCT-derived tendon cells undergoing oxidative stress damage. Recently, methylsulfonylmethane (MSM) (Barentz, Paderno Dugnano, Italy) has proven to have anti-inflammatory properties and to cause pain relief in patients affected by tendinopathies. This study aims at evaluating three preparations (Artrosulfur HA, MSM, and Artrosulfur MSM + HA) in the recovery from hydrogen peroxide-induced oxidative stress damage in human tenocyte. Cell proliferation, Lactate Dehydrogenase (LDH) release, and inducible nitric oxide synthases (iNOS) and prostaglandin E2 (PGE2) modulation were investigated. In parallel, expression of metalloproteinases 2 (MMP2) and 14 (MMP14) and collagen types I and III were also examined. Results demonstrate that Artrosulfur MSM + HA improves cell escape from oxidative stress by decreasing cytotoxicity and by reducing iNOS and PGE2 secretion. Furthermore, it differentially modulates MMP2 and MMP14 levels and enhances collagen III expression after 24 h, proteins globally related to rapid acceleration of the extracellular matrix (ECM) remodelling and thus tendon healing. By improving the anti-cytotoxic effect of HA, the supplementation of MSM may represent a feasible strategy to ameliorate cuff tendinopathies.

Learn More >

Search